576
Views
8
CrossRef citations to date
0
Altmetric
Review

Understanding type 1 diabetes through proteomics

, , &
Pages 571-580 | Received 14 Mar 2017, Accepted 20 Jun 2017, Published online: 28 Jun 2017

References

  • Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–633. ​​​
  • Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314:1360–1368.
  • Bottazzo GF. Death of a beta cell: homicide or suicide? Diabetic Med. 1986;3:119–130.
  • Dunne JL, Overbergh L, Purcell AW, et al. Post-translational modifications of proteins in type 1 diabetes: the next step in finding the cure? Diabetes. 2012;61:1907–1914.
  • McGinty JW, Marré ML, Bajzik V, et al. T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep. 2015;15:90.
  • Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol. 2015;3:67.
  • Eizirik DL, Kutlu B, Rasschaert J, et al. Use of microarray analysis to unveil transcription factor and gene networks contributing to β cell dysfunction and apoptosis. Ann N Y Acad Sci. 2003;1005:55–74.
  • Eizirik DL, Moore F, Flamez D, et al. Use of a systems biology approach to understand pancreatic β-cell death in Type 1 diabetes. Portland Press Ltd. 2008;36:321-327. ​​​
  • Ortis F, Naamane N, Flamez D, et al. The cytokines IL-1β and TNF-α regulate different transcriptional and alternative splicing networks in primary beta cells. Diabetes. 2009;59:358-374. ​​​
  • D’Hertog W, Overbergh L, Lage K, et al. Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells new insights into the pathways involved. Mol Cell Proteomics. 2007;6:2180–2199.
  • D’Hertog W, Maris M, Ferreira GB, et al. Novel insights into the global proteome responses of insulin-producing INS-1E cells to different degrees of endoplasmic reticulum stress. J Proteome Res. 2010;9:5142–5152.
  • Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29:42–61.
  • Blachère NE, Darnell RB, Albert ML. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. Plos Biol. 2005;3:e185.
  • Thomas H, Trapani J, Kay T. The role of perforin and granzymes in diabetes. Cell Death Differ. 2010;17:577–585.
  • Crevecoeur I, Rondas D, Mathieu C, et al. The beta-cell in type 1 diabetes: what have we learned from proteomic studies? Proteomics Clin Appl. 2015;9:755–766.
  • Todd JA, Bell JI, McDevitt HO. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.
  • Dorman JS, LaPorte RE, Stone RA, et al. Worldwide differences in the incidence of type I diabetes are associated with amino acid variation at position 57 of the HLA-DQ beta chain. Proc Natl Acad Sci. 1990;87:7370–7374.
  • Luca D, Ringquist S, Klei L, et al. On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. Am J Hum Genet. 2008;82:453–463.
  • Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996;85:291–297.
  • Achenbach P, Bonifacio E, Koczwara K, et al. Natural history of type 1 diabetes. Diabetes. 2005;54:S25–S31.
  • Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev. 2008;7:550–557.
  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type [thinsp] 1 diabetes. Nature. 2010;464:1293–1300.
  • Long AE, Gooneratne AT, Rokni S, et al. The role of autoantibodies to zinc transporter 8 in prediction of type 1 diabetes in relatives: lessons from the European Nicotinamide Diabetes Intervention Trial (ENDIT) cohort. J Clin Endocrinol Metabolism. 2011;97:632–637.
  • Kawasaki E, Eisenbarth GS. High-throughput radioassays for autoantibodies to recombinant autoantigens. Front Biosci. 2000;5:E181–E90.
  • Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci. 2015;16:3537–3563.
  • McLeish KR, Merchant ML, Klein JB, et al. Technical note: proteomic approaches to fundamental questions about neutrophil biology. J Leukoc Biol. 2013;94:683–692.
  • Brunner Y, Coute Y, Iezzi M, et al. Proteomics analysis of insulin secretory granules. Mol Cell Proteomics. 2007;6:1007–1017.
  • Brozzi F, Nardelli TR, Lopes M, et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 2015;58:2307–2316.
  • Crevecoeur I, Gudmundsdottir V, Vig S, et al. Early differences in islets from prediabetic NOD mice: combined microarray and proteomic analysis. Diabetologia. 2017;60:475–489.
  • Gorasia DG, Dudek NL, Veith PD, et al. Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes. J Proteome Res. 2015;14:688–699.
  • Rondas D, Gudmundsdottir V, D’Hertog W, et al. A proteomic study of the regulatory role for STAT-1 in cytokine-induced beta-cell death. Proteomics Clin Appl. 2015;9:938–952.
  • Burch TC, Morris MA, Campbell-Thompson M, et al. Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. Plos One. 2015;10:e0135663.
  • Zhang L, Lanzoni G, Battarra M, et al. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection. J Proteomics. 2017;150:149–159.
  • Green-Mitchell SM, Cazares LH, Semmes OJ, et al. On-tissue identification of insulin: in situ reduction coupled with mass spectrometry imaging. Proteomics Clin Appl. 2011;5:448–453.
  • Dudek NL, Tan CT, Gorasia DG, et al. Constitutive and inflammatory immunopeptidome of pancreatic beta-cells. Diabetes. 2012;61:3018–3025.
  • Van Lummel M, Van Veelen PA, De Ru AH, et al. Dendritic cells guide islet autoimmunity through a restricted and uniquely processed peptidome presented by high-risk HLA-DR. J Immun (Baltimore, Md: 1950). 2016;196:3253–3263.
  • Peakman M, Stevens EJ, Lohmann T, et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest. 1999;104:1449–1457.
  • Van Lummel M, Van Veelen PA, De Ru AH, et al. Discovery of a selective islet peptidome presented by the highest-risk HLA-DQ8trans molecule. Diabetes. 2016;65:732–741.
  • Espinosa G, Collado JA, Scholz E, et al. Peptides presented by HLA class I molecules in the human thymus. J Proteomics. 2013;94:23–36.
  • Carrero JA, Calderon B, Towfic F, et al. Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse. Plos One. 2013;8:e59701.
  • Aspord C, Rome S, Thivolet C. Early events in islets and pancreatic lymph nodes in autoimmune diabetes. J Autoimmun. 2004;23:27–35.
  • Yang P, Li M, Guo D, et al. Comparative analysis of the islet proteome between NOD/Lt and ALR/Lt mice. Ann N Y Acad Sci. 2008;1150:68–71.
  • Gerling IC, Singh S, Lenchik NI, et al. New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol Cell Proteomics. 2006;5:293–305.
  • Seeley EH, Schwamborn K, Caprioli RM. Imaging of intact tissue sections: moving beyond the microscope. J Biol Chem. 2011;286:25459–25466.
  • Marré ML, Profozich JL, Coneybeer JT, et al. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun. 2016;72:33–46.
  • Ouyang Q, Standifer NE, Qin H, et al. Recognition of HLA class I-restricted beta-cell epitopes in type 1 diabetes. Diabetes. 2006;55:3068–3074.
  • Abreu JR, Martina S, Verrijn Stuart AA, et al. CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin Exp Immunol. 2012;170:57–65.
  • Caron E, Kowalewski DJ, Chiek Koh C, et al. Analysis of Major Histocompatibility Complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics. 2015;14:3105–3117.
  • Campbell-Thompson M, Rodriguez-Calvo T, Battaglia M. Abnormalities of the exocrine pancreas in type 1 diabetes. Curr Diab Rep. 2015;15:79.
  • Liu CW, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics. 2016;16:1432–1446.
  • Mannering SI, Harrison LC, Williamson NA, et al. The insulin A-chain epitope recognized by human T cells is post-translationally modified. J Exp Med. 2005;202:1191–1197.
  • Delong T, Baker RL, He J, et al. Diabetogenic T-cell clones recognize an altered peptide of chromogranin A. Diabetes. 2012;61:3239–3246.
  • Van Lummel M, Duinkerken G, Van Veelen PA, et al. Post-translational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63:237–247.
  • McGinty JW, Chow I-T, Greenbaum C, et al. Recognition of post-translationally modified glutamic acid decarboxylase 65 epitopes in subjects with type 1 diabetes. Diabetes. 2014;63:3033-3040. ​​​
  • Rondas D, Crevecoeur I, D’Hertog W, et al. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes. 2015;64:573–586.
  • Babon JA, DeNicola ME, Blodgett DM, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22:1482–1487.
  • Wiles TA, Delong T, Baker RL, et al. An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J Autoimmun. 2016;78:11-18. ​​​
  • Delong T, Wiles TA, Baker RL, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–714.
  • Kracht MJ, Van Lummel M, Nikolic T, et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med. 2017.
  • Stadinski BD, Delong T, Reisdorph N, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010;11:225–231.
  • Gottlieb PA, Delong T, Baker RL, et al. Chromogranin A is a T cell antigen in human type 1 diabetes. J Autoimmun. 2014;50:38–41.
  • Baker RL, Bradley B, Wiles TA, et al. Cutting edge: nonobese diabetic mice deficient in chromogranin A are protected from autoimmune diabetes. J Immunol. 2016;196:39–43.
  • Stolp J, Chen YG, Cox SL, et al. Subcongenic analyses reveal complex interactions between distal chromosome 4 genes controlling diabetogenic B cells and CD4 T cells in nonobese diabetic mice. J Immun (Baltimore, Md: 1950). 2012;189:1406–1417.
  • Warren EH, Vigneron NJ, Gavin MA, et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science. 2006;313:1444–1447.
  • Hanada K-I, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature. 2004;427:252–256.
  • Vigneron N, Stroobant V, Chapiro J, et al. An antigenic peptide produced by peptide splicing in the proteasome. Science. 2004;304:587–590.
  • Somalinga BR, Roy RP. Volume exclusion effect as a driving force for reverse proteolysis implications for polypeptide assemblage in a macromolecular crowded Milieu. J Biol Chem. 2002;277:43253–43261.
  • Khan MWA, Banga K, Mashal SN, et al. Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications. BMC Immunol. 2011;12:19.
  • Khan MWA, Sherwani S, Khan WA, et al. Characterization of hydroxyl radical modified GAD65: a potential autoantigen in type 1 diabetes. Autoimmunity. 2009;42:150–158.
  • Ansari NA, Shahab U, Habeeb S, et al. Immuno‐chemistry of hydroxyl radical modified GAD‐65: a possible role in experimental and human diabetes mellitus. IUBMB Life. 2015;67:746–756.
  • Strollo R, Vinci C, Arshad MH, et al. Antibodies to post-translationally modified insulin in type 1 diabetes. Diabetologia. 2015;58:2851–2860.
  • Strollo R, Rizzo P, Spoletini M, et al. HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus. Diabetologia. 2013;56:563–572.
  • Doran TM, Morimoto J, Simanski S, et al. Discovery of phosphorylated peripherin as a major humoral autoantigen in type 1 diabetes mellitus. Cell Chem Biol. 2016;23:618–628.
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95.
  • Metz TO, Qian WJ, Jacobs JM, et al. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset. J Proteome Res. 2008;7:698–707.
  • Zhang Q, Fillmore TL, Schepmoes AA, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med. 2013;210:191–203.
  • Maclean B, Tomazela DM, Abbatiello SE, et al. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem. 2010;82:10116–10124.
  • Pepaj M, Gjerlaugsen N, Julien K, et al. Tmem27 is upregulated by vitamin D in INS-1 cells and its serum concentrations are low in patients with autoimmune diabetes. Scand J Clin Lab Invest. 2014;74:358–365.
  • Peet A, Hamalainen AM, Kool P, et al. Circulating IGF1 and IGFBP3 in relation to the development of beta-cell autoimmunity in young children. Eur J Endocrinol. 2015;173:129–137.
  • Von Toerne C, Laimighofer M, Achenbach P, et al. Peptide serum markers in islet autoantibody-positive children. Diabetologia. 2017;60:287–295.
  • Manjunatha S, Distelmaier K, Dasari S, et al. Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism. 2016;65:1421–1431.
  • Massa O, Alessio M, Russo L, et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J Proteomics. 2013;82:263–273.
  • LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol. 2005;9:14–19.
  • Miersch S, Bian X, Wallstrom G, et al. Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics. 2013;94:486–496.
  • Bian X, Wasserfall C, Wallstrom G, et al. Tracking the antibody immunome in type 1 diabetes using protein arrays. J Proteome Res. 2017;16:195–203.
  • Molin L, Seraglia R, Lapolla A, et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics. 2012;75:5888–5897.
  • Caseiro A, Barros A, Ferreira R, et al. Pursuing type 1 diabetes mellitus and related complications through urinary proteomics. J Lab Clin Med. 2014;163:188–199.
  • Suh MJ, Tovchigrechko A, Thovarai V, et al. Quantitative differences in the urinary proteome of siblings discordant for type 1 diabetes include lysosomal enzymes. J Proteome Res. 2015;14:3123–3135.
  • Isaacs SR, Wang J, Kim KW, et al. MicroRNAs in type 1 diabetes: complex interregulation of the immune system, beta cell function and viral infections. Curr Diab Rep. 2016;16:133.
  • Overgaard AJ, Kaur S, Pociot F. Metabolomic biomarkers in the progression to type 1 diabetes. Curr Diab Rep. 2016;16:127.
  • Doyle HA, Mamula MJ. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol. 2012;24:112–118.
  • Moulder R, Bhosale SD, Lahesmaa R, et al. The progress and potential of proteomic biomarkers for type 1 diabetes in children. Expert Rev Proteomics. 2017;14:31–41.
  • Pugliese A, Yang M, Kusmarteva I, et al. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) program: goals, operational model and emerging findings. Pediatr Diabetes. 2014;15:1–9.
  • Innodia.eu[Internet]. Leuven: INNODIA. [ cited 2017 May 31]. Available from: https://www.innodia.eu/consortium/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.