647
Views
11
CrossRef citations to date
0
Altmetric
Review

Insights from protein-protein interaction studies on bacterial pathogenesis

, , &
Pages 779-797 | Received 24 Apr 2017, Accepted 07 Aug 2017, Published online: 08 Sep 2017

References

  • Payne DJ. Microbiology. Desperately seeking new antibiotics. Science. 2008;321:1644–1645.
  • Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:155–164.
  • Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9:e1003467.
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis. 2009;48:1–12.
  • Boucher HW, Talbot GH, Benjamin DK Jr., et al. 10 x ‘20 Progress–development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:1685–1694.
  • Roca I, Akova M, Baquero F, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;6:22–29.
  • Bassetti M, Merelli M, Temperoni C, et al. New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob. 2013;12:1–15.
  • Giske CG, Monnet DL, Cars O, et al. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother. 2008;52:813–821.
  • O’Neill J. Tackling drug-resistant infections globally: an overview of our work. London, UK: Review on Antimicrobial Resistance; 2016.
  • Taniguchi Y, Choi PJ, Li GW, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–538.
  • Rüter C, Hardwidge PR. ‘Drugs from Bugs’: bacterial effector proteins as promising biological (immune-) therapeutics. FEMS Microbiol Lett. 2014;351:126–132.
  • Uchugonova A, Zhang Y, Salz R, et al. Imaging the different mechanisms of prostate cancer cell-killing by tumor-targeting Salmonella typhimurium A1-R. Anticancer Res. 2015;35:5225–5229.
  • Cash P. Proteomics of bacterial pathogens. Expert Opin Drug Discov. 2008;3:461–473.
  • Lambert JP, Ethier M, Smith JC, et al. Proteomics: from gel based to gel free. Anal Chem. 2005;77:3771–3787.
  • Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics. 2016;13:139–156.
  • Jean Beltran PM, Federspiel JD, Sheng X, et al. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol. 2017 Mar 27 13(3):922. doi: 10.15252/msb.201670626
  • Niemann GS, Brown RN, Gustin JK, et al. Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants. Infect Immun. 2011;79:33–43.
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340:245–246.
  • Fields S, Sternglanz R. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 1994;10:286–292.
  • Petschnigg J, Wong V, Snider J, et al. Investigation of membrane protein interactions using the split-ubiquitin membrane yeast two-hybrid system. Methods Mol Biol. 2012;812:225–244.
  • Grefen C, Lalonde S, Obrdlik P. Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Curr Protoc Neurosci. 2001. John Wiley & Sons, Inc. Curr. Protoc. Neurosci.41:5.27.1-5.27.41.
  • Iyer K, Burkle L, Auerbach D, et al. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci STKE. 2005;2005:pl3.
  • Petschnigg J, Groisman B, Kotlyar M, et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat Meth. 2014;11:585–592.
  • Lievens S, Gerlo S, Lemmens I, et al. Kinase substrate sensor (KISS), a mammalian in situ protein interaction sensor. Mol Cell Proteomics. 2014;13:3332–3342.
  • Brückner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci. 2009;10:2763–2788.
  • Suter B, Zhang X, Pesce CG, et al. Next-generation sequencing for binary protein-protein interactions. Front Genet. 2015;6:346.
  • Uetz P. Two-hybrid arrays. Curr Opin Chem Biol. 2002;6:57–62.
  • Thornbrough JM, Worley MJ. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 Type III effector srfH/sseI controls early extraintestinal dissemination. PLoS One. 2012;7:e45245.
  • Worley MJ, Nieman GS, Geddes K, et al. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci U S A. 2006;103:17915–17920.
  • Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem. 2009;284:27587–27595.
  • Zouhir S, Bernal-Bayard J, Cordero-Alba M, et al. The structure of the Slrp–Trx1 complex sheds light on the autoinhibition mechanism of the type III secretion system effectors of the NEL family. Biochem J. 2014;464:135.
  • Hallstrom KN, Srikanth CV, Agbor TA, et al. PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation. Cell Microbiol. 2015;17:843–859.
  • Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008;37:465–487.
  • Zhang XE, Cui Z, Wang D. Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosens Bioelectron. 2016;76:243–250.
  • Miller KE, Kim Y, Huh WK, et al. Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol. 2015;427:2039–2055.
  • Ciruela F, Vilardaga J-P, Fernández-Dueñas V. Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol. 2010;28:407–415.
  • Kerppola TK. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol. 2008;85:431–470.
  • Neumann C, Fraiture M, Hernàndez-Reyes C, et al. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Front Microbiol.2014 Oct 17;5:548.
  • Proell M, Gerlic M, Mace PD, et al. The CARD plays a critical role in ASC foci formation and inflammasome signaling. Biochem J. 2013;449:613–621.
  • Enninga J, Mounier J, Sansonetti P, et al. Secretion of type III effectors into host cells in real time. Nat Meth. 2005;2:959–965.
  • Charpentier X, Oswald E. Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 β-lactamase as a new fluorescence-based reporter. J Bacteriol. 2004;186:5486–5495.
  • Geddes K, Cruz F, Heffron F. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog. 2007;3:e196.
  • Rodrigues CD, Enninga J. The ‘when and whereabouts’ of injected pathogen effectors. Nat Meth. 2010;7:267–269.
  • Pechous RD, Goldman WE. Illuminating targets of bacterial secretion. PLoS Pathog. 2015;11:e1004981.
  • van Engelenburg SB, Palmer AE. Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Meth. 2010;7:325–330.
  • Snapp E. Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol. 2005;Chapter 21:Unit–21.4.
  • Boute N, Jockers R, Issad T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci. 2002;23:351–354.
  • Hou BH, Takanaga H, Grossmann G, et al. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc. 2011;6:1818–1833.
  • Christopeit T, Øverbø K, Danielson UH, et al. Efficient screening of marine extracts for protease inhibitors by combining FRET based activity assays and surface plasmon resonance spectroscopy based binding assays. Mar Drugs. 2013;11:4279–4293.
  • Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys. 2009;11:17–45.
  • Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A. 1999;96:151–156.
  • Borroto-Escuela DO, Flajolet M, Agnati LF, et al. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol. 2013;117:141–164.
  • Kocan M, See HB, Seeber RM, et al. Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J Biomol Screen. 2008;13:888–898.
  • Dragulescu-Andrasi A, Chan CT, De A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A. 2011;108:12060–12065.
  • Xie Q, Soutto M, Xu X, et al. Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells. Methods Mol Biol. 2011;680:3–28.
  • Romero-Fernandez W, Borroto-Escuela DO, Tarakanov AO, et al. Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochem Biophys Res Commun. 2011;409:764–768.
  • Cui B, Wang Y, Song Y, et al. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria. MBio. 2014;5.
  • Chan WT, Balsa D, Espinosa M. One cannot rule them all: are bacterial toxins-antitoxins druggable? FEMS Microbiol Rev. 2015;39:522–540.
  • Nieto C, Pellicer T, Balsa D, et al. The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Mol Microbiol. 2006;59:1280–1296.
  • Lioy VS, Rey O, Balsa D, et al. A toxin-antitoxin module as a target for antimicrobial development. Plasmid. 2010;63:31–39.
  • Lazova MD, Butler MT, Shimizu TS, et al. Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions. Mol Microbiol. 2012;84:697–711.
  • McShan AC Elucidation of the needle-tip and tip-translocon interactions of the Salmonella SPI-1 type III secretion system and identification of small molecule binders of the tip and translocon proteins [Dissertation]: University of Kansas; 2016
  • Dickenson NE, Picking WD. Förster resonance energy transfer (FRET) as a tool for dissecting the molecular mechanisms for maturation of the Shigella type III secretion needle tip complex. Int J Mol Sci. 2012;13:15137–15161.
  • Stensrud KF, Adam PR, La Mar CD, et al. Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip. J Biol Chem. 2008;283:18646–18654.
  • Buntru A, Zimmermann T, Hauck CR. Fluorescence resonance energy transfer (FRET)-based subcellular visualization of pathogen-induced host receptor signaling. BMC Biol. 2009;7:81.
  • Carriba P, Navarro G, Ciruela F, et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods. 2008;5:727–733.
  • Rebois RV, Robitaille M, Pétrin D, et al. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells. Methods. 2008;45:214–218.
  • Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–477.
  • Söderberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Meth. 2006;3:995–1000.
  • Chen TC, Lin KT, Chen CH, et al. Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network. J Proteome Res. 2014;13:5339–5346.
  • Koos B, Andersson L, Clausson CM, et al. Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol. 2014;377:111–126.
  • Dhillon HS, Johnson G, Shannon M, et al. Homogeneous and digital proximity ligation assays for the detection of Clostridium difficile toxins A and B. Biomol Detect Quantif. 2016;10:2–8.
  • Leslie DC, Sohrabi A, Ikonomi P, et al. Size-based separations as an important discriminator in development of proximity ligation assays for protein or organism detection. Electrophoresis. 2010;31:1615–1622.
  • Mattoon D, Michaud G, Merkel J, et al. Biomarker discovery using protein microarray technology platforms: antibody-antigen complex profiling. Expert Rev Proteomics. 2005;2:879–889.
  • Lee J-R, Magee DM, Gaster RS, et al. Emerging protein array technologies for proteomics. Expert Rev Proteomics. 2013;10:65–75.
  • Liang W, Wang S, Festa F, et al. Measurement of small molecule binding kinetics on a protein microarray by plasmonic-based electrochemical impedance imaging. Anal Chem. 2014;86:9860–9865.
  • Martin K, Steinberg TH, Cooley LA, et al. Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics. 2003;3:1244–1255.
  • Zhu H, Qian J. Applications of functional protein microarrays in basic and clinical research. Adv Genet. 2012;79:123–155.
  • Takahashi H, Uematsu A, Yamanaka S, et al. Establishment of a wheat cell-free synthesized protein array containing 250 human and mouse E3 ubiquitin ligases to identify novel interaction between E3 ligases and substrate proteins. PLoS One. 2016;11:e0156718.
  • Takahashi H, Nemoto K, Abdelaziz R, et al. Technology of wheat cell-free-based protein array for biochemical analyses of protein kinases and ubiquitin E3 ligases. In: Inoue J-I, Takekawa M, Eds. Protein modifications in pathogenic dysregulation of signaling. Tokyo: Springer Japan; 2015. p. 43–60.
  • Jones RB, Gordus A, Krall JA, et al. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439:168–174.
  • Syahir A, Usui K, Tomizaki K-Y, et al. Label and label-free detection techniques for protein microarrays. Microarrays. 2015;4:228–244.
  • Nguyen HH, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel, Switzerland). 2015;15:10481–10510.
  • Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28:2380–2392.
  • Ho Y-H, Sung T-C, Chen C-S. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics. 2012;11:M111.014720.
  • Tu Y-H, Ho Y-H, Chuang Y-C, et al. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One. 2011;6:e28197.
  • Yi C-R, Allen JE, Russo B, et al. Systematic analysis of bacterial effector-postsynaptic density 95/disc large/zonula occludens-1 (PDZ) domain interactions demonstrates Shigella OspE protein promotes protein kinase C activation via PDLIM proteins. J Biol Chem. 2014;289:30101–30113.
  • Scietti L, Sampieri K, Pinzuti I, et al. Exploring host-pathogen interactions through genome wide protein microarray analysis. Sci Rep. 2016;6:27996.
  • Yu X, Decker KB, Barker K, et al. Host-pathogen interaction profiling using self-assembling human protein arrays. J Proteome Res. 2015;14:1920–1936.
  • Sutandy FX, Qian J, Chen CS, et al. Overview of protein microarrays. Curr Protoc Protein Sci. 2013;27:Unit–27.1.
  • Hoppe S, Bier FF, von Nickisch-Rosenegk M. Microarray-based method for screening of immunogenic proteins from bacteria. J Nanobiotechnology. 2012;10:12.
  • Smits AH, Vermeulen M. Characterizing protein-protein interactions using mass spectrometry: challenges and opportunities. Trends Biotechnol. 2016;34:825–834.
  • Dworzanski JP, Snyder AP. Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev Proteomics. 2005;2:863–878.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.
  • Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389:1017–1031.
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.
  • Palagi PM, Arhné E, Müller M, et al. Bioinformatics tools for detecting post-translational modifications in mass spectrometry data. Amino Acids. 2011;5(14):463–475. Peptides and Proteins in Organic Chemistry: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Conrads TP, Hood BL, Veenstra TD. Mass spectrometric characterization of post-translational modifications. Proteomics for biological discovery. Hoboken, USA: John Wiley & Sons, Inc; 2006. p. 63–90.
  • Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14:35–48.
  • Mena M, Albar JP. Next generation instruments and methods for proteomics. Foodomics. 2013. pp. 15–67. John Wiley & Sons, Inc.
  • Carini M, Orioli M. Mass spectrometric strategies for identification and characterization of carbonylated peptides and proteins. Biomarkers for antioxidant defense and oxidative damage: principles and practical applications. Oxford, UK: Wiley-Blackwell; 2010. p. 173–197.
  • Husain M, Jones-Carson J, Song M, et al. Redox sensor SsrB Cys(203) enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proc Natl Acad Sci U S A. 2010;107:14396–14401.
  • Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotech. 2010;28:710–721.
  • Otto A, Becher D, Schmidt F. Quantitative proteomics in the field of microbiology. Proteomics. 2014;14:547–565.
  • Marcilla M, Albar JP. Quantitative proteomics: A strategic ally to map protein interaction networks. IUBMB Life. 2013;65:9–16.
  • Panchaud A, Affolter M, Moreillon P, et al. Experimental and computational approaches to quantitative proteomics: status quo and outlook. J Proteomics. 2008;71:19–33.
  • Glish GL, Vachet RW. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov. 2003;2:140–150.
  • Mellacheruvu D, Wright Z, Couzens AL, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Meth. 2013;10:730–736.
  • O’Connor CD, Clarke IN, Skipp P. Quest for complete proteome coverage. Methods Biochem Anal. 2006;49:27–38.
  • Trevisiol S, Ayoub D, Lesur A, et al. The use of proteases complementary to trypsin to probe isoforms and modifications. Proteomics. 2016;16:715–728.
  • Kim M-S, Pandey A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics. 2012;12:530–542.
  • Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12:483–490.
  • van Oudenhove L, Devreese B. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol. 2013;97:4749–4762.
  • Chait BT. Mass spectrometry: bottom-up or top-down? Science. 2006;314:65–66.
  • Tran JC, Zamdborg L, Ahlf DR, et al. Mapping intact protein isoforms in discovery mode using top down proteomics. Nature. 2011;480:254–258.
  • Dang X, Scotcher J, Wu S, et al. The first pilot project of the consortium for top-down proteomics: A status report. Proteomics. 2014;14:1130–1140.
  • Ahlf DR, Thomas PM, Kelleher NL. Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr Opin Chem Biol. 2013;17:787–794.
  • Ansong C, Wu S, Meng D, et al. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A. 2013;110:10153–10158.
  • Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics. 2012;12:1576–1590.
  • Subbotin RI, Chait BT. A Pipeline for determining protein–protein interactions and proximities in the cellular milieu. Mol Cell Proteomics. 2014;13:2824–2835.
  • Stengel F, Aebersold R, Robinson CV. Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics. 2012;11:R111.
  • Holding AN. XL-MS: protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63.
  • Liu F, Heck AJR. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol. 2015;35:100–108.
  • Guerrero C, Tagwerker C, Kaiser P, et al. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting Network. Mol Cell Proteomics. 2006;5:366–378.
  • Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. Eur J Mass Spectrom. 2014;20:99–116.
  • Babu M, Vlasblom J, Pu S, et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature. 2012;489:585–589.
  • Babu M, Kagan O, Guo H, et al. Identification of protein complexes in Escherichia coli using sequential peptide affinity purification in combination with tandem mass spectrometry. J Vis Exp. 2012;4057.
  • Hu P, Janga SC, Babu M, et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 2009;7:e96.
  • Chowdhury SM, Shi L, Yoon H, et al. A method for investigating protein-protein interactions related to Salmonella Typhimurium pathogenesis. J Proteome Res. 2009;8:1504–1514.
  • Kamanova J, Sun H, Lara-Tejero M, et al. The Salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 Ligase Family Members. PLOS Pathog. 2016;12:e1005552.
  • Fiskin E, Bhogaraju S, Herhaus L, et al. Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA. Nat Commun. 2017;8:14004.
  • Auweter SD, Bhavsar AP, De Hoog CL, et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem. 2011;286:24023–24035.
  • Sontag RL, Nakayasu ES, Brown RN, et al. Identification of novel host interactors of effectors secreted by Salmonella and Citrobacter. mSystems. 2016;1:e00032–15.
  • Roux KJ. Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell Mol Life Sci. 2013;70:3657–3664.
  • Lambert J-P, Tucholska M, Go C, et al. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics. 2015;118:81–94.
  • Lamb CA, Nühlen S, Judith D, et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. Embo J. 2016;35:281–301.
  • Mojica SA, Hovis KM, Frieman MB, et al. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell. 2015;26:1918–1934.
  • Brown RN, Sanford JA, Park JH, et al. A comprehensive subcellular proteomic survey of Salmonella grown under phagosome-mimicking versus standard laboratory conditions. Int J Proteomics. 2012;2012:1–12.
  • Schmidt A, Kochanowski K, Vedelaar S, et al. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol. 2016;34:104–110.
  • Collado-Romero M, Aguilar C, Arce C, et al. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium. Front Cell Infect Microbiol. 2015;5:64.
  • Walian PJ, Allen S, Shatsky M, et al. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris. J Proteome Res. 2012;11:5720–5735.
  • Havugimana PC, Hart GT, Nepusz T, et al. A census of human soluble protein complexes. Cell. 2012;150:1068–1081.
  • Wan C, Borgeson B, Phanse S, et al. Panorama of ancient metazoan macromolecular complexes. Nature. 2015;525:339–344.
  • Kodama Y, Hu C-D. Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. BioTechniques. 2012;53:285–298.
  • Gao X, Wan F, Mateo K, et al. Bacterial effector binding to ribosomal protein S3 subverts NF-κB function. PLOS Pathog. 2009;5:e1000708.
  • Pulliainen AT, Pieles K, Brand CS, et al. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production. Proc Natl Acad Sci U S A. 2012;109:9581–9586.
  • Razick S, Magklaras G, Donaldson IM. iRefIndex: A consolidated protein interaction database with provenance. BMC Bioinformatics. 2008;9:405.
  • Ammari MG, Gresham CR, McCarthy FM, et al. HPIDB 2.0: a curated database for host–pathogen interactions. Database. 2016;2016:baw103.
  • Wattam AR, Davis JJ, Assaf R, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45:D535–D542.
  • Wattam AR, Abraham D, Dalay O, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–D91.
  • Durmuş Tekir S, Çakır T, Ardıç E, et al. PHISTO: pathogen–host interaction search tool. Bioinformatics. 2013;29:1357–1358.
  • Snyder EE, Kampanya N, Lu J, et al. PATRIC: the VBI pathosystems resource integration center. Nucleic Acids Res. 2007;35:D401–D6.
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573.
  • Maxson T, Mitchell DA. Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. Tetrahedron. 2016;72:3609–3624.
  • Dyer MD, Neff C, Dufford M, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One. 2010;5:e12089.
  • Sidhu M, van der Poorten D. The gut microbiome. Aust Fam Physician. 2017;46:206–211.
  • Rieder R, Wisniewski PJ, Alderman BL, et al. Microbes and mental health: A review. Brain Behav Immun. 2017;S0889–S1591:30016–30018.
  • Choi HW, Brooking R, Neupane S, et al. Salmonella Typhimurium impedes innate immunity with a mast cell-suppressing tyrosine phosphatase SptP. Immunity. 2013;39:1108–1120.
  • Sabbagh SC, Forest CG, Lepage C, et al. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett. 2010;305:1–13.
  • Woolhouse M, Ward M, van Bunnik B, et al. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140083.
  • Gagarinova A, Emili A. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol Biosyst. 2012;8:1626–1638.
  • Urbanus ML, Quaile AT, Stogios PJ, et al. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol. 2016;12:893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.