654
Views
9
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis of mitochondria: biological and clinical progresses in cancer

, , &
Pages 891-903 | Received 10 Mar 2017, Accepted 29 Aug 2017, Published online: 07 Sep 2017

References

  • Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607.
  • Verma M, Kagan J, Sidransky D, et al. Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer. 2003;3(10):789–795.
  • Scharfe C, Zaccaria P, Hoertnagel K, et al. MITOP, the mitochondrial proteome database: 2000 update. Nucleic Acids Res. 2000;28(1):155–158.
  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.
  • Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9(1):148–163.
  • Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:9.
  • Palmfeldt J, Bross P. Proteomics of human mitochondria. Mitochondrion. 2017;33:2–14.
  • Da Cruz S, Parone PA, Martinou JC. Building the mitochondrial proteome. Expert Rev Proteomics. 2005;2(4):541–551.
  • Sims NR, Anderson MF. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc. 2008;3(7):1228–1239.
  • Kruse R, Højlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion. 2017;33:45–57.
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 2005;382(3):669–678.
  • Rabilloud T, Kieffer S, Procaccio V, et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis. 1998;19(6):1006–1014.
  • Hanson BJ, Schulenberg B, Patton WF, et al. A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis. 2001;22(5):950–959.
  • Brookes PS, Pinner A, Ramachandran A, et al. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics. 2002;2(8):969–977.
  • Taylor SW, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21(3):281–286.
  • Westbrook JA, Noirel J, Brown JE, et al. Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl. 2015;9(3–4):295–300.
  • Gao W, Xua J, Wang F, et al. Mitochondrial proteomics approach reveals voltage-dependent anion channel 1 (VDAC1) as a potential biomarker of gastric cancer. Cell Physiol Biochem. 2015;37(6):2339–2354.
  • Lindemann C, Thomanek N, Hundt F, et al. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem. 2017;398(5–6):687–699.
  • Shaw PG, Chaerkady R, Wang T, et al. Integrated proteomic and metabolic analysis of breast cancer progression. PloS One. 2013;8(9):e76220.
  • Lam MP, Scruggs SB, Kim T-Y, et al. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. J Proteomics. 2012;75(15):4602–4609.
  • Byron A. Clustering and network analysis of reverse phase protein array data. Methods Mol Biol. 2017;1606:171–191.
  • Chappell NP, Teng P-N, Hood BL, et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer. J Proteome Res. 2012;11(9):4605–4614.
  • Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012;52:23–35.
  • Pradelli LA, Beneteau M, Chauvin C, et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene. 2010;29(11):1641–1652.
  • Amado FM, Barros A, Azevedo AL, et al. An integrated perspective and functional impact of the mitochondrial acetylome. Expert Rev Proteomics. 2014;11(3):383–394.
  • Toren D, Barzilay T, Tacutu R, et al. MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity. Nucleic Acids Res. 2016;44(D1):D1262–1265.
  • Smith AC, Robinson AJ. MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 2016;44(D1):D1258–1261.
  • Murcha MW, Narsai R, Devenish J, et al. MPIC: a mitochondrial protein import components database for plant and non-plant species. Plant Cell Physiol. 2015;56(1):e10.
  • Kumar M, Kapil A, Shanker A. MitoSatPlant: mitochondrial microsatellites database of viridiplantae. Mitochondrion. 2014;19 Pt B:334–337.
  • Damas J, Carneiro J, Amorim A, et al. MitoBreak: the mitochondrial DNA breakpoints database. Nucleic Acids Res. 2014;42(Database issue):D1261–1268.
  • Rech de Laval V, Deleage G, Aouacheria A, et al. BCL2DB: database of BCL-2 family members and BH3-only proteins. Database. 2014;2014:bau013.
  • Chaley M, Kutyrkin V, Tulbasheva G, et al. HeteroGenome: database of genome periodicity. Database. 2014;2014.
  • D’Onorio de Meo P, D’Antonio M, Griggio F, et al. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res. 2012;40(Database issue):D1168–1172.
  • Gu Z, Li J, Gao S, et al. InterMitoBase: an annotated database and analysis platform of protein-protein interactions for human mitochondria. BMC Genomics. 2011;12:335.
  • Elstner M, Andreoli C, Ahting U, et al. MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol Biotechnol. 2008;40(3):306–315.
  • Reja R, Venkatakrishnan AJ, Lee J, et al. MitoInteractome: mitochondrial protein interactome database, and its application in ‘aging network’ analysis. BMC Genomics. 2009;10 Suppl 3:S20.
  • Lee YS, Kim W-Y, Ji M, et al. MitoVariome: a variome database of human mitochondrial DNA. BMC Genomics. 2009;10 Suppl 3:S12.
  • Putz J, Dupuis B, Sissler M, et al. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA. 2007;13(8):1184–1190.
  • Ingman M, Gyllensten U. mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucleic Acids Res. 2006;34(Database issue):D749–751.
  • Brandon MC, Lott MT, Nguyen KC, et al. MITOMAP: a human mitochondrial genome database–2004 update. Nucleic Acids Res. 2005;33(Database issue):D611–613.
  • Heazlewood JL, Millar AH. AMPDB: the arabidopsis mitochondrial protein database. Nucleic Acids Res. 2005;33(Database issue):D605–610.
  • Cotter D, Guda P, Fahy E, et al. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 2004;32(Database issue):D463–467.
  • Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922–2933.
  • Wang Y, Yu R-Y, Zhang J, et al. Inhibition of Nrf2 enhances the anticancer effect of 6-O-angeloylenolin in lung adenocarcinoma. Biochem Pharmacol. 2017;129:43–53.
  • Chua-On D, Proungvitaya T, Techasen A, et al. High expression of apoptosis-inducing factor, mitochondrion-associated 3 (AIFM3) in human cholangiocarcinoma. Tumour Biol. 2016;37(10):13659–13667.
  • Capala ME, Maat H, Bonardi F, et al. Mitochondrial dysfunction in human leukemic stem/progenitor cells upon loss of RAC2. PloS One. 2015;10(5):e0128585.
  • Wang Y, Cheung YH, Yang Z, et al. Proteomic approach to study the cytotoxicity of dioscin (saponin). Proteomics. 2006;6(8):2422–2432.
  • Xiao W, Jiang Y, Men Q, et al. Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo. Int J Oncol. 2015;46(1):360–368.
  • Zhao X, Xu L, Zheng L, et al. Potent effects of dioscin against gastric cancer in vitro and in vivo. Phytomedicine. 2016;23(3):274–282.
  • Shu LP, Zhou ZW, Zi D, et al. A SILAC-based proteomics elicits the molecular interactome of alisertib (MLN8237) in human erythroleukemia K562 cells. Am J Transl Res. 2015;7(11):2442–2461.
  • Nunes T, Bernardazzi C, De Souza HS. Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. Biomed Res Int. 2014;2014:1–12.
  • Gunther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477(7364):335–339.
  • Christofferson DE, Li Y, Yuan J. Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol. 2014;76:129–150.
  • Galluzzi L, Kepp O, Krautwald S, et al. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol. 2014;35:24–32.
  • Zhong CQ, Li Y, Yang D, et al. Quantitative phosphoproteomic analysis of RIP3-dependent protein phosphorylation in the course of TNF-induced necroptosis. Proteomics. 2014;14(6):713–724.
  • Wang Z, Jiang H, Chen S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148(1–2):228–243.
  • Tait SW, Oberst A, Quarato G, et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 2013;5(4):878–885.
  • Wang Y, Huang ZH, Li YJ, et al. Dynamic quantitative proteomics characterization of TNF-alpha-induced necroptosis. Apoptosis. 2016;21(12):1438–1446.
  • Rohde K, Kleinesudeik L, Roesler S, et al. A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. 2017;24(1):83–97.
  • Xu Y, Ma HB, Fang YL, et al. Cisplatin-induced necroptosis in TNFalpha dependent and independent pathways. Cell Signal. 2017;31:112–123.
  • Xu B, Xu M, Tian Y, et al. Matrine induces RIP3-dependent necroptosis in cholangiocarcinoma cells. Cell Death Discov. 2017;3:16096.
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131.
  • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–662.
  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Biol. 2011;12(1):9–14.
  • De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492.
  • Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. 2014;56(3):360–375.
  • Callegari S, Oeljeklaus S, Warscheid B, et al. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy. 2017;13(1):201–211.
  • Mannam P, Rauniyar N, Lam TT, et al. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med. 2016;101:102–115.
  • Phu L, Izrael-Tomasevic A, Matsumoto ML, et al. Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics. 2011;10(5):M110 003756.
  • Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5–6):396–403.
  • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–707.
  • Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2 Pt A):156–164.
  • Yi E-Y, Park S-Y, Jung S-Y, et al. Mitochondrial dysfunction induces EMT through the TGF-beta/Smad/Snail signaling pathway in Hep3B hepatocellular carcinoma cells. Int J Oncol. 2015;47(5):1845–1853.
  • Trotta AP, Chipuk JE. Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci. 2017;74:1999–2017.
  • Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol. 2016;39:43–52.
  • Ferreira-da-Silva A, Valacca C, Rios E, et al. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PloS One. 2015;10(3):e0122308.
  • Che T-F, Lin C-W, Wu Y-Y, et al. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget. 2015;6(35):37349–37366.
  • Pyakurel A, Savoia C, Hess D, et al. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol Cell. 2015;58(2):244–254.
  • Hu H, Deng C, Yang T, et al. Proteomics revisits the cancer metabolome. Expert Rev Proteomics. 2011;8(4):505–533.
  • Lamb R, Harrison H, Hulit J, et al. Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014;5(22):11029–11037.
  • De Luca A, Fiorillo M, Peiris-Pages M, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 2015;6(17):14777–14795.
  • Lamb R, Fiorillo M, Chadwick A, et al. Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: implications for more effective radiation therapy. Oncotarget. 2015;6(16):14005–14025.
  • Bonuccelli G, Peiris-Pages M, Ozsvari B, et al. Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: telomerase drives tumor cell heterogeneity. Oncotarget. 2017;8(6):9868–9884.
  • Cui H, Zhang AJ, Chen M, et al. ABC transporter inhibitors in reversing multidrug resistance to chemotherapy. Curr Drug Targets. 2015;16(12):1356–1371.
  • Lyakhovich A, Lleonart ME. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid Med Cell Longev. 2016;1716341:2016.
  • Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator–thinking outside the box. Biochim Biophys Acta. 2006;1762(2):181–190.
  • Kuo KK, Kuo CJ, Chiu CY, et al. Quantitative proteomic analysis of differentially expressed protein profiles involved in pancreatic ductal adenocarcinoma. Pancreas. 2016;45(1):71–83.
  • Zhang C, Ding W, Liu Y, et al. Proteomics-based identification of VDAC1 as a tumor promoter in cervical carcinoma. Oncotarget. 2016;7(32):52317–52328.
  • Tajeddine N, Galluzzi L, Kepp O, et al. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene. 2008;27(30):4221–4232.
  • Brahimi-Horn MC, Ben-Hail D, Ilie M, et al. Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Cancer Res. 2012;72(8):2140–2150.
  • Shoshan-Barmatz V, Ben-Hail D, Admoni L, et al. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 2015;1848(10 Pt B):2547–2575.
  • Arif T, Kerlin Y, Nakdimon I, et al. VDAC1 is a molecular target in glioblastoma, with its depletion leading to reprogrammed metabolism and reversed oncogenic properties. Neuro Oncol. 2017.
  • Glaser SP, Lee EF, Trounson E, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26(2):120–125.
  • Wang YF, Jiang CC, Kiejda KA, et al. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res. 2007;13(16):4934–4942.
  • Kornblau SM, Qutub A, Yao H, et al. Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells. PloS One. 2013;8(10):e78453.
  • Kawakami H, Huang S, Pal K, et al. Mutant BRAF upregulates MCL-1 to confer apoptosis resistance that is reversed by MCL-1 antagonism and cobimetinib in colorectal cancer. Mol Cancer Ther. 2016;15(12):3015–3027.
  • Bashari MH, Fan F, Vallet S, et al. Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res. 2016;18(1):26.
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–354.
  • Zhao Y, Altman BJ, Coloff JL, et al. Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol. 2007;27(12):4328–4339.
  • Nijtmans LG, De Jong L, Artal Sanz M, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. Embo J. 2000;19(11):2444–2451.
  • Wang S, Fusaro G, Padmanabhan J, et al. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene. 2002;21(55):8388–8396.
  • Theiss AL, Sitaraman SV. The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta. 2011;1813(6):1137–1143.
  • Liu T, Tang H, Lang Y, et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273(2):233–242.
  • Fusaro G, Dasgupta P, Rastogi S, et al. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003;278(48):47853–47861.
  • Ko KS, Tomasi ML, Iglesias-Ara A, et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology. 2010;52(6):2096–2108.
  • Dai Z, Yin J, He H, et al. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics. 2010;10(21):3789–3799.
  • Patel N, Chatterjee SK, Vrbanac V, et al. Rescue of paclitaxel sensitivity by repression of prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci U S A. 2010;107(6):2503–2508.
  • Gregory-Bass RC, Olatinwo M, Xu W, et al. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer. 2008;122(9):1923–1930.
  • Chiu C-F, Ho M-Y, Peng J-M, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene. 2013;32(6):777–787.
  • Thuaud F, Ribeiro N, Nebigil CG, et al. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol. 2013;20(3):316–331.
  • Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem. 2013;288(41):29890–29900.
  • Cheng J, Gao F, Chen X, et al. Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog. 2014;53(10):820–832.
  • Renvoise M, Bonhomme L, Davanture M, et al. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics. 2014;106:140–150.
  • Liu SH, Lin CH, Liang FP, et al. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy. Biochem Pharmacol. 2014;87(2):229–242.
  • Duan W, Xu G. ProC-TEL: profiling of protein C-termini by enzymatic labeling. Methods Mol Biol. 2017;1574:135–144.
  • Li Y, Wang Z, Zhou W, et al. A rapid and easy protein N-terminal profiling strategy using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and StageTip. Proteomics. 2017;17(13–14). doi:10.1002/pmic.201600481. [Epub 2017 Jul 3].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.