317
Views
46
CrossRef citations to date
0
Altmetric
Original Research

Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: Correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom

, , &
Pages 949-961 | Received 27 Jun 2018, Accepted 17 Oct 2018, Published online: 31 Oct 2018

References

  • Bawaskar HS , Bawaskar PH , Bawaskar PH. Snake bite in India: a neglected disease of poverty. Lancet. 2017;390(10106):1947–1948.
  • Mohapatra B , Warrell DA , Suraweera W , et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis. 2011;5(4):e1018.
  • Mukherjee A , Maity C. The composition of Naja naja venom samples from three districts of West Bengal, India. Comp Biochemistry Physiol A: Mol Integr Physiol. 1998;119(2):621–627.
  • Mukherjee A , Ghosal S , Maity C. Some biochemical properties of Russell’s viper (Daboia russelli) venom from Eastern India: correlation with clinico-pathological manifestation in Russell’s viper bite. Toxicon. 2000;38(2):163–175.
  • Whitaker R . Common Indian snakes: a field guide. Macmillan, New Delhi, India; 2006.
  • Wuster W , Harvey AL . Reviews of venomous snake systematics in Toxicon. Toxicon. 1996;34(4):397–398.
  • Mukherjee AK , Maity CR . Biochemical composition, lethality and pathophysiology of venom from two cobras– Naja naja and N. kaouthia . Comp Biochem Physiol B Biochem Mol Biol. 2002;131(2):125–132.
  • Sintiprungrat K , Watcharatanyatip K , Senevirathne WD , et al. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics. 2016;132:131–143.
  • Tan KY , Tan CH , Fung SY , et al. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics. 2015;120:105–125.
  • Wong KY , Tan CH , Tan NH . Venom and purified toxins of the spectacled cobra (Naja naja) from Pakistan: insights into toxicity and antivenom neutralization. Am J Trop Med Hyg. 2016;94(6):1392–1399.
  • Kalita B , Patra A , Das A , et al. Proteomic analysis and immuno-profiling of Eastern India Russell’s viper (Daboia russelii) venom: correlation between RVV composition and clinical manifestations post RV bite. J Proteome Res. 2018;17(8):2819–2833.
  • Kalita B , Patra A , Mukherjee AK . Unraveling the proteome composition and immuno-profiling of Western India Russell’s viper venom for in-depth understanding of its pharmacological properties, clinical manifestations, and effective antivenom treatment. J Proteome Res. 2017;16(2):583–598.
  • Kalita B , Singh S , Patra A , et al. Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A2 enzymes, the major toxin class of Russell’s viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. Int J Biol Macromol. 2018;118(Pt A):375–385.
  • Mukherjee AK , Kalita B , Mackessy SP . A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. J Proteomics. 2016;144:73–86.
  • Tan CH , Tan NH , Tan KY , et al. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters. Toxins. 2015;7(2):572–581.
  • Tan KY , Tan CH , Fung SY , et al. Neutralization of the principal toxins from the venoms of Thai Naja kaouthia and Malaysian Hydrophis schistosus: insights into toxin-specific neutralization by two different antivenoms. Toxins. 2016;8(4):86.
  • Tan NH , Wong KY , Tan CH . Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. J Proteomics. 2017;157:18–32.
  • Dutta S , Chanda A , Kalita B , et al. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: correlation of venom composition with its biochemical and pharmacological properties. J Proteomics. 2017;156:29–39.
  • Lomonte B , Calvete JJ . Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venomous Anim Toxins Including Trop Dis. 2017;23:26.
  • Patra A , Kalita B , Chanda A , et al. Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep. 2017;7(1):17119.
  • Mukherjee AK , Mackessy SP . Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell’s Viper (Daboia russelii russelii) and assessment of its therapeutic potential. Biochim Biophys Acta. 2013;1830(6):3476–3488.
  • Faisal T , Tan KY , Sim SM , et al. Proteomics, functional characterization and antivenom neutralization of the venom of Pakistani Russell’s viper (Daboia russelii) from the wild. J Proteomics. 2018;183:1–13.
  • Pla D , Gutierrez JM , Calvete JJ . Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon. 2012;60(4):688–699.
  • Doley R , Mukherjee AK . Purification and characterization of an anticoagulant phospholipase A(2) from Indian monocled cobra (Naja kaouthia) venom. Toxicon. 2003;41(1):81–91.
  • Weissbach H , Robertson AV , Witkop B , et al. Rapid spectrophotometric assays for snake venom L-amino acid oxidase based on the oxidation of L-kynurenine or 3,4-dehydro-L-proline. Anal Biochem. 1960;1:286–290.
  • Ellman GL , Courtney KD , Andres V Jr. , et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Sulkowski E , Laskowski SM . Inactivation of 5′-nucleotidase in commercial preparations of venom exonuclease (phosphodiesterase). Biochimica Et Biophysica Acta (Bba)-Nucleic Acids and Protein Synthesis. 1971;240(3):443–447.
  • Williams WJ , Esnouf MP . The fractionation of Russell’s-viper (Vipera russellii) venom with special reference to the coagulant protein. Biochem J. 1962;84:52–62.
  • Choi H , Fermin D , Nesvizhskii AI . Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics. 2008;7(12):2373–2385.
  • Massoulie J , Pezzementi L , Bon S , et al. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993;41(1):31–91.
  • Dzoyem JP , Kuete V , Eloff JN . Biochemical parameters in toxicological studies in Africa: significance, principle of methods, data interpretation, and use in plant screenings. In: Toxicological survey of African medicinal plants, Kuete, V (Ed). Elsevier, London. 2014. p. 659–715.
  • Gasanov SE , Dagda RK , Rael ED . Snake venom cytotoxins, phospholipase A2s, and Zn(2+)-dependent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol. 2014;4(1):1000181.
  • Mukherjee AK . Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res. 2010;1: 37–42.
  • Xu N , Zhao HY , Yin Y , et al. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China. J Proteomics. 2017;159:19–31.
  • Tan KY , Tan CH , Chanhome L , et al. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ. 2017;5:e3142.
  • Modahl CM , Mukherjee AK , Mackessy SP . An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon. 2016;119:8–20.
  • Montecucco C , Gutiérrez JM , Lomonte B . Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci. 2008;65(18):2897–2912.
  • Sun Q-Y BJ . Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon. 2010;56(8):1459–1469.
  • Gasanov SE , Alsarraj MA , Gasanov NE , et al. Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J Membr Biol. 1997;155(2):133–142.
  • Mukherjee AK . Phospholipase A2-interacting weak neurotoxins from venom of monocled cobra Naja kaouthia display cell-specific cytotoxicity. Toxicon. 2008;51(8):1538–1543.
  • Punde DP . Management of snake-bite in rural Maharashtra: a 10-year experience. Natl Med J India. 2005;18(2):71–75.
  • Chang CC , Chuang ST , Lee CY , et al. Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom. Br J Pharmacol. 1972;44(4):752–764.
  • Pung YF , Wong PT , Kumar PP , et al. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem. 2005;280(13):13137–13147.
  • Ranawaka UK , Lalloo DG , de Silva HJ . Neurotoxicity in snakebite—the limits of our knowledge. PLoS Negl Trop Dis. 2013;7(10):e2302.
  • Maroko PR , Carpenter CB , Chiariello M , et al. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978;61(3):661–670.
  • Gutierrez JM , Theakston RD , Warrell DA . Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006;3(6):e150.
  • Muller CE , Jacobson KA . Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta. 2011;1808(5):1290–1308.
  • Gutierrez JM , Leon G , Burnouf T . Antivenoms for the treatment of snakebite envenomings: the road ahead. J Int Assoc Biol Standardization. 2011;39(3):129–142.
  • Mukherjee AK . Green medicine as a harmonizing tool to antivenom therapy for the clinical management of snakebite: the road ahead. Indian J Med Res. 2012;136(1):10.
  • Warrell DA , Gutierrez JM , Calvete JJ , et al. New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J Med Res. 2013;138:38–59.
  • Tan CH , Tan KY , Lim SE , et al. Venomics of the beaked sea snake, Hydrophis schistosus: a minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteomics. 2015;126:121–130.
  • Tan CH , Wong KY , Tan KY , et al. Venom proteome of the yellow-lipped sea krait, Laticauda colubrina from Bali: insights into subvenomic diversity, venom antigenicity and cross-neutralization by antivenom. J Proteomics. 2017;166:48–58.
  • Dutta S , Gogoi D , Mukherjee AK . Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: inhibition of anticoagulant activity by low molecular weight heparin. Biochimie. 2015;110:93–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.