237
Views
20
CrossRef citations to date
0
Altmetric
Review

Advances in understanding the role of angiotensin-regulated proteins in kidney diseases

, , , , , , , & show all
Pages 77-92 | Received 14 Jun 2018, Accepted 05 Nov 2018, Published online: 27 Nov 2018

References

  • Sanchez-Niño MD, Sanz AB, Ramos AM, et al. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. Clin Kidney J. 2017;10(2):188–191.
  • Sanchez-Niño MD, Sanz AB, Ramos AM, et al. Translational science in chronic kidney disease. Clin Sci (Lond). 2017;131(14):1617–1629.
  • Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, et al. Therapeutic approaches to diabetic nephropathy–beyond the RAS. Nat Rev Nephrol. 2014;10(6):325–346.
  • Ruiz-Ortega M, Rupérez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant. 2006;21(1):16–20.
  • Finnerup NB, Angiotensin BC. II:from blood pressure to pain control. Lancet. 2014;383(9929):1613–1614.
  • Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2):H137–152.
  • Carey RM. Update on angiotensin AT2 receptors. Curr Opin Nephrol Hypertens. 2017;26(2):91–96.
  • Chow BS, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond). 2016;130(15):1307–1326.
  • Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev. 2015;67(4):754–819.
  • Tamargo M, Tamargo J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin Drug Discov. 2017;12(8):827–848.
  • Christensen GL, Kelstrup CD, Lyngsø C, et al. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics. 2010;9(7):1540–1553.
  • Zhang H, Unal H, Gati C, et al. Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell. 2015;161(4):833–844.
  • Sanni SJ, Hansen JT, Bonde MM, et al. Beta-arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations. Br J Pharmacol. 2010;161(1):150–161.
  • Liu J, Li QX, Wang XJ, et al. β-arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis. 2016;7:e2183.
  • Zhang H, Han GW, Batyuk A, et al. Structural basis for selectivity and diversity in angiotensin II receptors. Nature. 2017;544(7650):327–332.
  • Tetzner A, Gebolys K, Meinert C, et al. G-protein-coupled receptor mrgD is a receptor for angiotensin-(1-7) involving adenylyl cyclase, cAMP, and phosphokinase A. Hypertension. 2016;68(1):185–194.
  • Schinzari F, Tesauro M, Veneziani A, et al. Favorable vascular actions of angiotensin-(1-7) in human obesity. Hypertension. 2018;71(1):185–191.
  • Saulière A, Bellot M, Paris H, et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol. 2012;8(7):622–630.
  • Christensen GL, Knudsen S, Schneider M, et al. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor. Mol Cell Endocrinol. 2011;331(1):49–56.
  • Hostrup A, Christensen GL, Bentzen BH, et al. Functionally selective AT(1) receptor activation reduces ischemia reperfusion injury. Cell Physiol Biochem. 2012;30(3):642–652.
  • Tamura K, Wakui H, Azushima K, et al. Angiotensin II type 1 receptor binding molecule ATRAP as a possible modulator of renal sodium handling and blood pressure in pathophysiology. Curr Med Chem. 2015;22(28):3210–3216.
  • Kobayashi R, Wakui H, Azushima K, et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 2017;91(5):1115–1125.
  • Mederle K, Schweda F, Kattler V, et al. The angiotensin II AT1 receptor-associated protein arap1 is involved in sepsis-induced hypotension. Crit Care. 2013;17(4):R130.
  • Patel SN, Ali Q, Samuel P, et al. 2 receptor and receptor mas are colocalized and functionally interdependent in obese zucker rat kidney. Hypertension. 2017;70(4):831–838.
  • Leonhardt J, Villela DC, Teichmann A, et al. Evidence for heterodimerization and functional interaction of the angiotensin Type 2 receptor and the receptor MAS. Hypertension. 2017;69(6):1128–1135.
  • Bellot M, Galandrin S, Boularan C, et al. Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol. 2015;11(4):271–279.
  • Ali Q, Dhande I, Samuel P, et al. Angiotensin type 2 receptor null mice express reduced levels of renal angiotensin II type 2 receptor/angiotensin (1-7)/mas receptor and exhibit greater high-fat diet-induced kidney injury. J Renin Angiotensin Aldosterone Syst. 2016;17:3.
  • Ruggenenti P, Remuzzi G. RAS blockade: nephroprotection by dual RAS blockade–a welcome back. Nat Rev Nephrol. 2015;11(9):507–508.
  • Palmer SC, Mavridis D, Navarese E, et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet. 2015;385(9982):2047–2056.
  • Esteras R, Perez-Gomez MV, Rodriguez-Osorio L, et al. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function. Ther Adv Drug Saf. 2015;6(4):166–176.
  • Standards of medical care in diabetes-2017: summary of revisions. Diabetes Care. 2017;40(Suppl 1):S4–S5.
  • Chapter 4: blood pressure management in CKD ND patients with diabetes mellitus. Kidney Int. Suppl.. 2012;2(5):363–369.
  • Knoll GA, Fergusson D, Chassé M, et al. Ramipril versus placebo in kidney transplant patients with proteinuria: a multicentre, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(4):318–326.
  • Crajoinas RO, Polidoro JZ, Carneiro de morais CP, et al.. Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells. Am J Physiol Cell Physiol. 2016;311(5):C768–C776.
  • Wall SM, Lazo-Fernandez Y. The role of pendrin in renal physiology. Annu Rev Physiol. 2015;77:363–378.
  • Hirohama D, Ayuzawa N, Ueda K, et al. Aldosterone is essential for angiotensin II-induced upregulation of pendrin. J Am Soc Nephrol. 2018;29(1):57–68.
  • Rojas-Vega L, Gamba G. Mini-review: regulation of the renal NaCl cotransporter by hormones. Am J Physiol Renal Physiol. 2016;310(1):F10–14.
  • Coble JP, Grobe JL, Johnson AK, et al. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol. 2015;308(4):R238–249.
  • Matsukawa T, Miyamoto T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R624–629.
  • Li C, Wang W, Rivard CJ, et al. Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am J Physiol Renal Physiol. 2011;300(5):F1255–1261.
  • Steckelings UM, Kloet A, Sumners C. Centrally mediated cardiovascular actions of the angiotensin II type 2 receptor. Trends Endocrinol Metab. 2017;28(9):684–693.
  • Blankestijn PJ, London G, Fliser D, et al. Major pathways of the reno-cardiovascular link: the sympathetic and renin-angiotensin systems. Kidney Int Suppl. 2011;1(1):13–16.
  • Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123(5):2011–2023.
  • Claflin KE, Sandgren JA, Lambertz AM, et al. Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest. 2017;127(4):1414–1424.
  • Marion E, Song OR, Christophe T, et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell. 2014;157(7):1565–1576.
  • Ba Aqeel SH, Sanchez A, Batlle D. Angiotensinogen as a biomarker of acute kidney injury. Clin Kidney J. 2017;10(6):759–768.
  • Ruiz-Ortega M, Lorenzo O, Rupérez M, et al. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors. Am J Pathol. 2001;158(5):1743–1756.
  • Esteban V, Ruperez M, Vita JR, et al. Effect of simultaneous blockade of AT1 and AT2 receptors on the NFkappaB pathway and renal inflammatory response. Kidney Int Suppl. 2003;86:S33–38.
  • Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med. 2015;4(6):1325–1347.
  • Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, et al. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs. 2016 Sep;25(9):1045-1058.
  • Suarez-Alvarez B, Morgado-Pascual JL, Rayego-Mateos S, et al. Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J Am Soc Nephrol. 2017;28(2):504–519.
  • Rupérez M, Ruiz-Ortega M, Esteban V, et al. Angiotensin II increases connective tissue growth factor in the kidney. Am J Pathol. 2003;163(5):1937–1947.
  • Alique M, Sánchez-López E, Rayego-Mateos S, et al. II, via angiotensin receptor type 1/nuclear factor-κB activation, causes a synergistic effect on interleukin-1-β-induced inflammatory responses in cultured mesangial cells. J Renin Angiotensin Aldosterone Syst. 2015;16(1):23–32.
  • Sanz AB, Sanchez-Niño MD, Ramos AM, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21(8):1254–1262.
  • Urushihara M, Takamatsu M, Shimizu M, et al. ERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis. Am J Physiol Renal Physiol. 2010;298(1):F167–176.
  • Luo R, Zhang W, Zhao C, et al. Elevated endothelial hypoxia-inducible factor-1α contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension. 2015;66(1):75–84.
  • Esteban V, Lorenzo O, Rupérez M, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004;15(6):1514–1529.
  • Alique M, Civantos E, Sanchez-Lopez E, et al. Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci (Lond). 2014;127(1):19–31.
  • Mezzano S, Droguett A, Burgos ME, et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl. 2003;86:S64–70.
  • Nair AR, Ebenezer PJ, Saini Y, et al. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res. 2015;335(2):238–247.
  • Rupérez M, Sánchez-López E, Blanco-Colio LM, et al. The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney Int Suppl. 2005;99:S39–45 .
  • Ozawa Y, Kobori H. Crucial role of Rho-nuclear factor-kappaB axis in angiotensin II-induced renal injury. Am J Physiol Renal Physiol. 2007;293(1):F100–109.
  • Ravarotto V, Pagnin E, Maiolino G, et al. The blocking of angiotensin II type 1 receptor and RhoA/Rho kinase activity in hypertensive patients: effect of olmesartan medoxomil and implication with cardiovascular-renal remodeling. J Renin Angiotensin Aldosterone Syst. 2015;16(4):1245–1250.
  • Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006;69(12):2212–2218.
  • Tanifuji C, Suzuki Y, Geot WM, et al. Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal. 2005;7(9–10):1261–1268.
  • Saleh MA, McMaster WG, Wu J, et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest. 2015;125(3):1189–1202.
  • Caillon A, Mian MOR, Fraulob-Aquino JC, et al. γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation. 2017;135(22):2155–2162.
  • Macconi D, Remuzzi G, Benigni A. Key fibrogenic mediators: old players. renin-angiotensin system. Kidney Int Suppl. 2014;4(1):58–64.
  • Zhang JD, Patel MB, Griffiths R, et al. Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J Clin Invest. 2014;124(5):2198–2203.
  • Rodrigues-Díez R, Carvajal-González G, Sánchez-López E, et al. Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. role of ROCK and MAPK pathways. Pharm Res. 2008;25(10):2447–2461.
  • Lakshmanan AP, Thandavarayan RA, Watanabe K, et al. Modulation of AT-1R/MAPK cascade by an olmesartan treatment attenuates diabetic nephropathy in streptozotocin-induced diabetic mice. Mol Cell Endocrinol. 2012;348(1):104–111.
  • Carvajal G, Rodríguez-Vita J, Rodrigues-Díez R, et al. Angiotensin II activates the smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int. 2008;74(5):585–595.
  • Wang Z, Tang L, Zhu Q, et al. Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int. 2011;79(3):300–310.
  • Tang L, Yi R, Yang B, et al. Valsartan inhibited HIF-1α pathway and attenuated renal interstitial fibrosis in streptozotocin-diabetic rats. Diabetes Res Clin Pract. 2012;97(1):125–131.
  • Chen J, Chen JK, Harris RC. Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol. 2012;32(5):981–991.
  • Sánchez-López E, Rodriguez-Vita J, Cartier C, et al. Inhibitory effect of interleukin-1beta on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. Am J Physiol Renal Physiol. 2008;294(1):F149–160.
  • Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, et al. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol. 2018;244(2):227–241.
  • Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med. 2005;11(8):867–874.
  • Bhaskaran M, Reddy K, Radhakrishanan N, et al. Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol. 2003;284(5):F955–965.
  • Ren Z, Liang W, Chen C, et al. Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1. Cell Signal. 2012;24(2):443–450.
  • Sanchez-Niño MD, Sanz AB, Sanchez-Lopez E, et al. HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II. Lab Invest. 2012;92(1):32–45.
  • Sanz AB, Santamaría B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol. 2008;19(9):1634–1642.
  • Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28(1):218–229.
  • Zhang SL, Guo J, Moini B, et al. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int. 2004;66(6):2181–2192.
  • Brooks HL, Allred AJ, Beutler KT, et al. Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension. 2002;39(2Pt 2):470–473.
  • Konvalinka A, Zhou J, Dimitromanolakis A, et al. Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC). J Biol Chem. 2013;288(34):24834–24847.
  • Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–3247.
  • Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, et al. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs. 2016;25(9):1045–1058.
  • Hoffmann BR, Stodola TJ, Wagner JR, et al. Mechanisms of mas1 receptor-mediated signaling in the vascular endothelium. Arterioscler Thromb Vasc Biol. 2017;37(3):433–445.
  • Bøgebo R, Horn H, Olsen JV, et al. Predicting kinase activity in angiotensin receptor phosphoproteomes based on sequence-motifs and interactions. PLoS One. 2014;9(4):e94672.
  • Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int. 2011;80(6):620–632.
  • Schenk LK, Möller-Kerutt A, Klosowski R, et al. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes. FASEB J. 2017;31(11):5019–5035.
  • Meinert C, Gembardt F, Böhme I, et al. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7). J Proteomics. 2016;130:129–139.
  • Altmaier E, Fobo G, Heier M, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur J Epidemiol. 2014;29(5):325–336.
  • Mervaala E, Biala A, Merasto S, et al. Metabolomics in angiotensin II-induced cardiac hypertrophy. Hypertension. 2010;55(2):508–515.
  • Tábara LC, Poveda J, Martin-Cleary C, et al. Mitochondria-targeted therapies for acute kidney injury. Expert Rev Mol Med. 2014;16:e13.
  • Cerezo C, Ruilope LM, Segura J, et al. Microalbuminuria breakthrough under chronic renin-angiotensin-aldosterone system suppression. J Hypertens. 2012;30(1):204–209.
  • Konvalinka A, Batruch I, Tokar T, et al. Quantification of angiotensin II-regulated proteins in urine of patients with polycystic and other chronic kidney diseases by selected reaction monitoring. Clin Proteomics. 2016;13:16.
  • Baldan-Martin M, de la Cuesta F, Alvarez-Llamas G, et al. Prediction of development and maintenance of high albuminuria during chronic renin-angiotensin suppression by plasma proteomics. Int J Cardiol. 2015;196:170–177.
  • Baldan-Martin M, Mourino-Alvarez L, Gonzalez-Calero L, et al. Plasma molecular signatures in hypertensive patients with renin-angiotensin system suppression: new predictors of renal damage and de novo albuminuria indicators. Hypertension. 2016;68(1):157–166.
  • Martin-Lorenzo M, Gonzalez-Calero L, Martinez PJ, et al. Immune system deregulation in hypertensive patients chronically RAS suppressed developing albuminuria. Sci Rep. 2017;7(1):8894.
  • Gonzalez-Calero L, Martin-Lorenzo M, de la Cuesta F, et al. Urinary alpha-1 antitrypsin and CD59 glycoprotein predict albuminuria development in hypertensive patients under chronic renin-angiotensin system suppression. Cardiovasc Diabetol. 2016;15:8.
  • Gonzalez-Calero L, Martínez PJ, Martin-Lorenzo M, et al. Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget. 2017;8(27):44217–44231.
  • de la Cuesta F, Baldan-Martin M, Moreno-Luna R, et al. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria. Oncotarget. 2017;8(9):15553–15562.
  • Gonzalez-Calero L, Martin-Lorenzo M, Martínez PJ, et al. Hypertensive patients exhibit an altered metabolism. A specific metabolite signature in urine is able to predict albuminuria progression. Transl Res. 2016;178:25–37.e27.
  • Martin-Lorenzo M, Martinez PJ, Baldan-Martin M, et al. Citric acid metabolism in resistant hypertension: underlying mechanisms and metabolic prediction of treatment response. Hypertension. 2017;70(5):1049–1056.
  • Pulido-Olmo H, García-Prieto CF, Álvarez-Llamas G, et al. Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria. Clin Sci (Lond). 2016;130(7):525–538.
  • Pontillo C, Mischak H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin Kidney J. 2017;10(2):192–201.
  • Lindhardt M, Persson F, Currie G, et al. Proteomic prediction and renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016;6(3):e010310.
  • Lindhardt M, Persson F, Oxlund C, et al. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrol Dial Transplant. 2017.
  • Andersen S, Mischak H, Zürbig P, et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol. 2010;11:29.
  • Rossing K, Mischak H, Parving HH, et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int. 2005;68(1):193–205.
  • Pena MJ, Heinzel A, Rossing P, et al. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus. J Transl Med. 2016;14(1):203.
  • Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–430.
  • Del Borgo M, Wang Y, Bosnyak S, et al. β-Pro7Ang III is a novel highly selective angiotensin II type 2 receptor (AT2R) agonist, which acts as a vasodepressor agent via the AT2R in conscious spontaneously hypertensive rats. Clin Sci (Lond). 2015;129(6):505–513.
  • Willyard C. As drug target reemerges, the question is to block or stimulate it. Nat Med. 2014;20(3):222.
  • Rossignol P, Massy ZA, Azizi M, et al. The double challenge of resistant hypertension and chronic kidney disease. Lancet. 2015;386(10003):1588–1598.
  • Rice ASC, Dworkin RH, McCarthy TD, et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: a randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet. 2014;383(9929):1637–1647.
  • Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792.
  • Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234.
  • Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–481.
  • Packer M, McMurray JJV. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389(10081):1831–1840.
  • Domenig O, Manzel A, Grobe N, et al. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep. 2016;6:33678.
  • Esteban V, Heringer-Walther S, Sterner-Kock A, et al. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One. 2009;4(4):e5406.
  • Brar GS, Barrow BM, Watson M, et al. Neprilysin is required for angiotensin-(1-7)’s ability to enhance insulin secretion via its proteolytic activity to generate angiotensin-(1-2). Diabetes. 2017;66(8):2201–2212.
  • Clotet S, Riera M, Pascual J, et al. RAS and sex differences in diabetic nephropathy. Am J Physiol Renal Physiol 2016. ajprenal.00292.02015.
  • Mirabito KM, Hilliard LM, Kett MM, et al. Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor. Am J Physiol Renal Physiol. 2014;307(8):F901–907.
  • Wang L, Wang X, Qu HY, et al. Role of kidneys in sex differences in angiotensin II-induced hypertension. Hypertension. 2017;70(6):1219–1227.
  • Valiño-Rivas L, Cuarental L, Agustin M, et al. MAGE genes in the kidney: identification of mageD2 as upregulated during kidney injury and in stressed tubular cells. Nephrol Dial Transplant. 2018 in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.