420
Views
20
CrossRef citations to date
0
Altmetric
Review

Glycomics of prostate cancer: updates

, , , , &
Pages 65-76 | Received 13 Sep 2018, Accepted 14 Nov 2018, Published online: 27 Nov 2018

References

  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.
  • Global Burden of Disease Cancer C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548.
  • Thompson J, Lawrentschuk N, Frydenberg M, et al. The role of magnetic resonance imaging in the diagnosis and management of prostate cancer. BJU Int. 2013;112:6–20.
  • Boesen L, Chabanova E, Løgager V, et al. Prostate cancer staging with extracapsular extension risk scoring using multiparametric MRI: a correlation with histopathology. Eur Radiol. 2015;25:1776–1785.
  • Umberto A, Gabriele T, Franco L, et al. Novel Diagnostic Biomarkers of Prostate Cancer: an Update. Curr Med Chem. 2018;25:1–14.
  • Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926930.
  • Landhuis E. Glycobiology: sweet success. Nature. 2017;547:127–129.
  • Rodríguez E, Schetters ST, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018;18:204–211.
  • Schneider M, Kumar V, Nordstrom LU, et al. Inhibition of Delta-induced Notch signaling using fucose analogs. Nat Chem Biol. 2018;14:65-71.
  • Wang H, Wang RB, Cai KM, et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat Chem Biol. 2017;13:415-424.
  • Beatson R, Tajadura-Ortega V, Achkova D, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273–1281.
  • Murphy K, Murphy BT, Boyce S, et al. Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer. Mol Oncol. 2018;12:1513–1525.
  • Dalziel M, Crispin M, Scanlan CN, et al. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343:1235681.
  • Dosekova E, Filip J, Bertok T, et al. Nanotechnology in glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med Res Rev. 2017;37:514–626.
  • PalečEk E, Tkáč J, BartošÍk M, et al. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115:2045–2108.
  • Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540-555.
  • Teoh ST, Ogrodzinski M, Ross C, et al. Sialic acid metabolism: a key player in breast cancer metastasis revealed by metabolomics. Front Oncol. 2018;8:174.
  • Blanas A, Sahasrabudhe NM, Rodríguez E, et al. Fucosylated antigens in cancer: an alliance toward tumor progression, metastasis, and resistance to chemotherapy. Front Oncol. 2018;8:39.
  • Kailemia MJ, Xu GG, Wong M, et al. Recent advances in the mass spectrometry methods for glycomics and cancer. Anal Chem. 2018;90:208–224.
  • Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget. 2016;7:35478–35489.
  • Reynolds NM, Mohammadalipour A, Hall CR, et al. Galectin-1 influences breast cancer cell adhesion to e-selectin via ligand intermediaries. Cell Mol Bioeng. 2018;11:37–52.
  • Munkley J, Mills IG, Elliott DJ. The role of glycans in the development and progression of prostate cancer. Nat Rev Urol. 2016;13:324–333.
  • Drake RR, Jones EE, Powers TW. Altered Glycosylation in Prostate Cancer. In: Drake RR, Ball LE, et al., editors. Glycosylation and cancer. Advances in Cancer Research. Vol. 126. San Diego: Elsevier Academic Press Inc; 2015. p. 345–382.
  • Gilgunn S, Conroy PJ, Saldova R, et al. Aberrant PSA glycosylation-a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107.
  • Vermassen T, Speeckaert MM, Lumen N, et al. Glycosylation of prostate specific antigen and its potential diagnostic applications. Clin Chim Acta. 2012;413:1500–1505.
  • Group BDW; Atkinson Jr AJ, Colburn WA, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
  • Barrabes S, Llop E, Ferrer-Batalle M, et al. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer. Clin Chim Acta. 2017;470:97–102.
  • Kosanovic M, Jankovic M. Isolation of urinary extracellular vesicles from Tamm-Horsfall protein-depleted urine and their application in the development of a lectin-exosome-binding assay. Biotechniques. 2014;57:143–149.
  • Hatakeyama S, Yoneyama T, Tobisawa Y, et al. Recent progress and perspectives on prostate cancer biomarkers. Int J Clin Oncol. 2017;22:214–221.
  • Kammeijer GSM, Nouta J, de la Rosette J, et al. An in-depth glycosylation assay for urinary prostate-specific antigen. Anal Chem. 2018;90:4414–4421.
  • Yang S, Clark D, Liu Y, et al. High-throughput analysis of N-glycans using AutoTip via glycoprotein immobilization. Sci Rep. 2017;7. DOI:10.1038/s41598-017-10487-811.
  • Jia X, Chen J, Sun S, et al. Detection of aggressive prostate cancer associated glycoproteins in urine using glycoproteomics and mass spectrometry. Proteomics. 2016;16:2989–2996.
  • Hsiao CJ, Tzai TS, Chen CH, et al. Analysis of urinary prostate-specific antigen glycoforms in samples of prostate cancer and benign prostate hyperplasia. Dis. Markers. 2016;12. DOI:10.1155/2016/8915809.
  • Kawahara R, Ortega F, Rosa-Fernandes L, et al. Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget. 2018;9:33077-33097.
  • Ishikawa T, Yoneyama T, Tobisawa Y, et al. An automated micro-total immunoassay system for measuring cancer-associated 2,3-linked Sialyl N-Glycan-Carrying prostate-specific antigen may improve the accuracy of prostate cancer diagnosis. Int J Mol Sci. 2017;18:15.
  • Llop E, Ferrer-Batalle M, Barrabes S, et al. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics. 2016;6:1190–1204.
  • Narimatsu H, Sato T. Wisteria floribunda agglutinin positive glycobiomarkers: a unique lectin as a serum biomarker probe in various diseases. Expert Rev Proteomics. 2018;15:183–190.
  • Hagiwara K, Tobisawa Y, Kaya T, et al. Wisteria floribunda agglutinin and its reactive-glycan-carrying prostate-specific antigen as a novel diagnostic and prognostic marker of prostate cancer. Int J Mol Sci. 2017;18:16.
  • Kazuno S, Furukawa J, Shinohara Y, et al. Glycosylation status of serum immunoglobulin G in patients with prostate diseases. Cancer Med. 2016;5:1137–1146.
  • Totten SM, Adusumilli R, Kullolli M, et al. Multi-lectin affinity chromatography and quantitative proteomic analysis reveal differential glycoform levels between prostate cancer and benign prostatic hyperplasia sera. Sci Rep. 2018;8. DOI:10.1038/s41598-018-24270-w.
  • Chen X, Nagai Y, Zhu ZQ, et al. A spliced form of CD44 expresses the unique glycan that is recognized by the prostate cancer specific antibody F77. Oncotarget. 2018;9:3631–3640.
  • Bhanushali PB, Badgujar SB, Tripathi MM, et al. Development of glycan specific lectin based immunoassay for detection of prostate specific antigen. Int J Biol Macromol. 2016;86:468–480.
  • Jia GZ, Dong ZY, Sun CX, et al. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia. Oncotarget. 2017;8:76987–76999.
  • Takahashi S, Sugiyama T, Shimomura M, et al. Site-specific and linkage analyses of fucosylated N-glycans on haptoglobin in sera of patients with various types of cancer: possible implication for the differential diagnosis of cancer. Glycoconjugate J. 2016;33:471–482.
  • Zhou JL, Yang WM, Hu YW, et al. Site-specific fucosylation analysis identifying glycoproteins associated with aggressive prostate cancer cell lines using tandem affinity enrichments of intact glycopeptides followed by mass spectrometry. Anal Chem. 2017;89:7623–7630.
  • Tzeng S-F, Tsai C-H, Chao T-K, et al. O-Glycosylation–mediated signaling circuit drives metastatic castration-resistant prostate cancer. FASEB J. 2018. DOI:10.1096/fj.201800687.
  • Höti N, Yang S, Hu Y, et al. Overexpression of α (1, 6) fucosyltransferase in the development of castration-resistant prostate cancer cells. Prostate Cancer Prostatic Dis. 2018;21:137.
  • Aguilar AL, Meng L, Hou XM, et al. Sialyltransferase-based chemoenzymatic histology for the detection of N- and O-Glycans. Bioconjugate Chem. 2018;29:1231–1239.
  • Wei AW, Fan B, Zhao YJ, et al. ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3 beta/beta-catenin signaling pathway. Oncotarget. 2016;7:65374–65388.
  • Tsai CH, Tzeng SF, Chao TK, et al. Metastatic progression of prostate cancer is mediated by autonomous binding of galectin-4-o-Glycan to cancer cells. Cancer Res. 2016;76:5756–5767.
  • Sato T, Yoneyama T, Tobisawa Y, et al. Core 2 (beta-1, 6-N-acetylglucosaminyltransferase-1 expression in prostate biopsy specimen is an indicator of prostate cancer aggressiveness. Biochem Biophys Res Commun. 2016;470:150–156.
  • Mikami J, Tobisawa Y, Yoneyama T, et al. I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiveness by enhancing 51 integrin signaling. Cancer Sci. 2016;107:359–368.
  • Lucas JL, Tacheny EA, Ferris A, et al. Development and validation of a Luminex assay for detection of a predictive biomarker for PROSTVAC-VF therapy. PLoS One. 2017;12:13.
  • Yang S, Hu YW, Sokoll L, et al. Simultaneous quantification of N- and O-glycans using a solid-phase method. Nat Protocols. 2017;12:1229–1244.
  • Totten SM, Feasley CL, Bermudez A, et al. Parallel comparison of n-linked glycopeptide enrichment techniques reveals extensive glycoproteomic analysis of plasma enabled by SAX-ERLIC. J Proteome Res. 2017;16:1249–1260.
  • Spiciarich DR, Nolley R, Maund SL, et al. Bioorthogonal labeling of human prostate cancer tissue slice cultures for glycoproteomics. Angew Chem Int Ed. 2017;56:8992–8997.
  • Cañeque T, Müller S, Rodriguez R. Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem. 2018;2:202–215.
  • Drake RR, Powers TW, Jones EE, et al. MALDI mass spectrometry imaging of n-linked glycans in cancer tissues. In: Drake RR, McDonnell LA, editors. Applications of mass spectrometry imaging to cancer. Advances in cancer research. Vol. 134. San Diego: Elsevier Academic Press Inc; 2017. p. 85–116.
  • Chocholova E, Bertok T, Jane E, et al. Glycomics meets artificial intelligence – potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed. Clin Chim Acta. 2018;481:49–55.
  • Gerlach JQ, Griffin MD. Getting to know the extracellular vesicle glycome. Mol Biosystems. 2016;12:1071–1081.
  • Williams C, Royo F, Aizpurua-Olaizola O, et al. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles. 2018;7:1442985.
  • Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332–343.
  • Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–638.
  • Batista BS, Eng WS, Pilobello KT, et al. Identification of a conserved glycan signature for microvesicles. J Proteome Res. 2011;10:4624–4633.
  • Vlaeminck-Guillem V. Extracellular vesicles in prostate cancer carcinogenesis, diagnosis, and management. Front Oncol. 2018;8. DOI:10.3389/fonc.2018.00222.
  • Samsonov R, Shtam T, Burdakov V, et al. Lectin‐induced agglutination method of urinary exosomes isolation followed by mi‐RNA analysis: application for prostate cancer diagnostic. Prostate. 2016;76:68–79.
  • Royo F, Diwan I, Tackett MR, et al. Comparative miRNA analysis of urine extracellular vesicles isolated through five different methods. Cancers (Basel). 2016;8:112.
  • Feng Y, Guo Y, Li Y, et al. Lectin-mediated in situ rolling circle amplification on exosomes for probing cancer-related glycan pattern. Anal Chim Acta. 2018;1039:108–115.
  • Fang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform. Anal Chem. 2018;90:2787–2795.
  • Mizutani K, Terazawa R, Kameyama K, et al. Isolation of prostate cancer-related exosomes. Anticancer Res. 2014;34:3419–3423.
  • Wang W, Luo J, Wang S. Recent progress in isolation and detection of extracellular vesicles for cancer diagnostics. Adv Healthcare Mater. 2018. DOI:10.1002/adhm.201800484
  • Vermassen T, D’herde K, Jacobus D, et al. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile. J Clin Pathol. 2017;70:838–846.
  • Cappello F, Logozzi M, Campanella C, et al. Exosome levels in human body fluids: a tumor marker by themselves? Eur J Pharm Sci. 2017;96:93–98.
  • Akagi T, Kato K, Hanamura N, et al. Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis. Jpn J Appl Phys. 2014;53:06JL01.
  • Jolly P, Damborsky P, Madaboosi N, et al. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron. 2016;79:313–319.
  • Damborska D, Bertok T, Dosekova E, et al. Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta. 2017;184:3049–3067.
  • Bertok T, Lorencova L, Chocholova E, et al. Electrochemical impedance spectroscopy-based biosensors: mechanistic principles, analytical examples for assay of protein cancer biomarkers and challenges towards commercialization. ChemElectroChem. 2018. DOI:10.1002/celc.201800848.
  • Sun S, Hu YW, Jia L, et al. Site-specific profiling of serum glycoproteins using n-linked glycan and glycosite analysis revealing atypical N-Glycosylation sites on albumin and alpha-1B-Glycoprotein. Anal Chem. 2018;90:6292–6299.
  • Chocholova E, Bertok T, Lorencova L, et al. Advanced antifouling zwitterionic layer based impedimetric HER2 biosensing in human serum: glycoprofiling as a novel approach for breast cancer diagnostics. Sens Actuators, B. 2018;272:626–633.
  • Bertok T, Dosekova E, Belicky S, et al. Mixed zwitterion-based self-assembled monolayer interface for impedimetric glycomic analyses of human igg samples in an array format. Langmuir. 2016;32:7070–7078.
  • Pihikova D, Kasak P, Kubanikova P, et al. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–79.
  • Pihikova D, Pakanova Z, Nemcovic M, et al. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: focus on sialic acid. Proteomics. 2016;16:3085–3095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.