316
Views
23
CrossRef citations to date
0
Altmetric
Review

Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: opening new avenues in clinical research

&

References

  • Mohapatra B, Warrell DA, Suraweera W, et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop. 2011;5(4):e1018.
  • WHO. Snakebite envenoming: a strategy for prevention and control: executive summary. World Health Organization; 2019. Report no.:WHO/CDS/NTD/NZD/2019.03.
  • Whitaker R, Martin G. Diversity and distribution of medically important snakes of India. In: Gopalakrishnakone P, Faiz A, Fernando R, Gnanathasan C, Habib A, Yang CC, editors. Toxinology (Vol. 2):Clinic Toxinol Asia Pac Afri. Dordrecht: Springer;2015;115–136.
  • Mukherjee AK, Maity CR. Biochemical composition, lethality and pathophysiology of venom from two cobras – Naja naja and N. kaouthia. Comp Biochem Physiol B Biochem Mol Biol. 2002;131(2):125–132.
  • Chanda A, Patra A, Kalita B, et al. Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Rev Proteomics. 2018;15(11):949–961.
  • Senji Laxme RR, Khochare S, de Souza HF, et al. Beyond the ‘Big Four’: venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl Trop Dis. 2019;13(12):e0007899.
  • Mukherjee AK, Kalita B, Dutta S, et al. Snake envenomation: therapy and challenges in India. In: Section V: global approaches to envenomation and treatments. In: Mackessey SP, editor. Handbook of venoms and toxins of reptiles. Second ed. UK: CRC Press; 2020. (accepted manuscript).
  • Punde DP. Management of snake-bite in rural Maharashtra: a 10-year experience. Natl Med J India. 2005;18(2):71–75.
  • Simpson ID. Snakebite management in India, the first few hours: a guide for primary care physicians. J Indian Med Assoc. 2007;105(6):324, 326, 328. passim.
  • Salve PS, Vatavati S, Hallad J. Clustering the envenoming of snakebite in India: the district level analysis using Health Management Information System data. Clinic Epidemiol Global Health. 2020;8(3):733-738.
  • Jayanthi G, Gowda TV. Geographical variation in India in the composition and lethal potency of Russell’s viper (Vipera russelli) venom. Toxicon. 1988;26(3):257–264.
  • Mukherjee A, Maity C. The composition of Naja naja venom samples from three districts of West Bengal, India. Comp Biochem Physiol A. 1998;119(2):621–627.
  • Mukherjee A, Ghosal S, Maity C. Some biochemical properties of Russell’s viper (Daboia russelli) venom from Eastern India: correlation with clinico-pathological manifestation in Russell’s viper bite. Toxicon. 2000;38(2):163–175.
  • Shashidharamurthy R, Jagadeesha D, Girish K, et al. Variation in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Mol Cell Biochem. 2002;229(1–2):93–101.
  • Prasad NB, Uma B, Bhatt SK, et al. Comparative characterisation of Russell’s viper (Daboia/Vipera russelli) venoms from different regions of the Indian peninsula. Biochim Biophys Acta (BBA). 1999;1428(2–3):121–136.
  • Kalita B, Mackessy SP, Mukherjee AK. Proteomic analysis reveals geographic variation in venom composition of Russell’s viper in the Indian subcontinent: implications for clinical manifestations post-envenomation and antivenom treatment. Expert Rev Proteomics. 2018;15(10):837–849.
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301.
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.
  • Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol. 2014;15(7):453–464.
  • Lomonte B, Calvete JJ. Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Animals Toxins Includ Trop Dis. 2017;23(1):26.
  • Kalita B, Mukherjee AK. Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. J Prot Proteom. 2019; 10:149–164.
  • Juarez P, Sanz L, Calvete JJ. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4(2):327–338.
  • Calvete JJ. Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification. Expert Rev Proteomics. 2018;15(7):555–568.
  • Chanda A, Kalita B, Patra A, et al. Proteomic analysis and antivenomics study of western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics. 2018;16(2):171–184.
  • Dutta S, Chanda A, Kalita B, et al. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: correlation of venom composition with its biochemical and pharmacological properties. J Proteomics. 2017;156:29–39.
  • Kalita B, Patra A, Mukherjee AK. Unraveling the proteome composition and immuno-profiling of western India Russell’s viper venom for in-depth understanding of its pharmacological properties, clinical manifestations, and effective antivenom treatment. J Proteome Res. 2017;16(2):583–598.
  • Kalita B, Patra A, Das A, et al. Proteomic analysis and immuno-profiling of eastern India Russell’s viper (Daboia russelii) venom: correlation between RVV composition and clinical manifestations post RV bite. J Proteome Res. 2018;17(8):2819–2833.
  • Kalita B, Singh S, Patra A, et al. Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A2 enzymes, the major toxin class of Russell’s viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. Int J Biol Macromol. 2018;118:375–385.
  • Patra A, Kalita B, Chanda A, et al. Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep. 2017;7(1):17119.
  • Patra A, Chanda A, Mukherjee AK. Quantitative proteomic analysis of venom from southern India common krait (Bungarus caeruleus) and identification of poorly immunogenic toxins by immune-profiling against commercial antivenom. Expert Rev Proteomics. 2019;16(5):457–469.
  • Sharma M, Das D, Iyer JK, et al. Unveiling the complexities of Daboia russelii venom, a medically important snake of India, by tandem mass spectrometry. Toxicon. 2015;107:266–281.
  • Choudhury M, McCleary RJ, Kesherwani M, et al. Comparison of proteomic profiles of the venoms of two of the ‘Big Four’ snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Toxicon. 2017;135:33–42.
  • Mukherjee AK, Kalita B, Mackessy SP. A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. J Proteomics. 2016;144:73–86.
  • Tan NH, Fung SY, Tan KY, et al. Functional venomics of the Sri Lankan Russell’s viper (Daboia russelii) and its toxinological correlations. J Proteomics. 2015;128:403–423.
  • Sintiprungrat K, Watcharatanyatip K, Senevirathne W, et al. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics. 2016;132:131–143.
  • Ali SA, Yang DC, Jackson TN, et al. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics. 2013;89:15–23.
  • Chanda A, Mukherjee AK. Quantitative proteomics to reveal the composition of southern India spectacled cobra (Naja naja) venom and its immunological cross-reactivity towards commercial antivenom. Int J Biol Macromol. 2020;160:224-232. .
  • Wong KY, Tan CH, Tan KY, et al. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics. 2018;175:156–173.
  • Asad MH, McCleary RJ, Salafutdinov I, et al. Proteomics study of southern Punjab Pakistani cobra (Naja naja: formerly Naja naja karachiensis) venom. Toxicol Env Chem. 2019;101(1–2):91–116.
  • Faisal T, Tan KY, Sim SM, et al. Proteomics, functional characterization and antivenom neutralization of the venom of Pakistani Russell’s viper (Daboia russelii) from the wild. J Proteomics. 2018;183:1–13.
  • Pla D, Sanz L, Quesada-Bernat S, et al. Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J Proteomics. 2019;207:103443.
  • Hashmi SU, Alvi A, Munir I, et al. Functional venomics of the Big-4 snakes of Pakistan. Toxicon. 2020;179:60‐71.
  • Vanuopadath M, Sajeev N, Murali AR, et al. Mass spectrometry-assisted venom profiling of Hypnale hypnale found in the Western Ghats of India incorporating de novo sequencing approaches. Int J Biol Macromol. 2018;118(Pt B):1736–1746.
  • Vanuopadath M, Shaji SK, Raveendran D, et al. Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Int J Biol Macromol. 2020;148:1029–1045.
  • Deka A, Gogoi A, Das D, et al. Proteomics of Naja kaouthia venom from North East India and assessment of Indian polyvalent antivenom by third generation antivenomics. J Proteomics. 2019;207:103463.
  • Deka A, Reza MA, Faisal Hoque KM, et al. Comparative analysis of Naja kaouthia venom from north-east India and Bangladesh and its cross reactivity with Indian polyvalent antivenoms. Toxicon. 2019;164:31–43.
  • Tsai IH, Lu PJ, Su JC. Two types of Russell’s viper revealed by variation in phospholipases A2 from venom of the subspecies. Toxicon. 1996;34(1):99–109.
  • Shashidharamurthy R, Mahadeswaraswamy YH, Ragupathi L, et al. Systemic pathological effects induced by cobra (Naja naja) venom from geographically distinct origins of Indian peninsula. Exp Toxicol Pathol. 2010;62(6):587–592.
  • Bawaskar HS, Bawaskar PH, Punde DP, et al. Profile of snakebite envenoming in rural Maharashtra, India. J Assoc Physicians India. 2008;56:88–95.
  • Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855–867.
  • Utkin YN. Last decade update for three-finger toxins: newly emerging structures and biological activities. World J Biol Chem. 2019 7;10(1):17–27.
  • Schetinger M, Rocha J, Ahmed M, et al. Snake venom acetylcholinesterase. In: Mackessey SP, editor. Handbook Venoms Toxins Rept. London: CRC Press; 2009;207–219.
  • Bawaskar HS, Bawaskar PH, Bawaskar PH. Snake bite in India: a neglected disease of poverty. Lancet. 2017;390(10106):1947–1948.
  • Chiappinelli V, Hue B, Mony L, et al. Kappa-bungarotoxin blocks nicotinic transmission at an identified invertebrate central synapse. J Expt Biology. 1989;141(1):61–71.
  • Pung YF, Wong PT, Kumar PP, et al. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Bio Chem. 2005;280(13):13137–13147.
  • Maroko PR, Carpenter CB, Chiariello M, et al. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978;61(3):661–670.
  • Montecucco C, Gutierrez JM, Lomonte B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci. 2008;65(18):2897–2912.
  • Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006;3(6):e150.
  • Oh AMF, Tan CH, Ariaranee GC, et al. Venomics of Bungarus caeruleus (Indian krait): comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. J Proteomics. 2017;164:1–18.
  • Theakston RD, Phillips RE, Warrell DA, et al. Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications of therapy with Haffkine antivenom. Trans R Soc Trop Med Hyg. 1990;84(2):301–308.
  • Bawaskar HS, Bawaskar PH, Bawaskar PH. Pathophysiology of dilatation of pupils due to scorpion and snake envenomation and its therapeutic value: clinical observations. Indian J Ophthalmol. 2017;65(1):67.
  • Doley R, Mukherjee AK. Purification and characterization of an anticoagulant phospholipase A(2) from Indian monocled cobra (Naja kaouthia) venom. Toxicon. 2003;41(1):81–91.
  • Sun QY, Bao J. Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon. 2010;56(8):1459–1469.
  • Joseph J, Simpson I, Menon N, et al. First authenticated cases of life-threatening envenoming by the hump-nosed pit viper (Hypnale hypnale) in India. Trans R Soc Trop Med Hyg. 2007;101(1):85–90.
  • Suntravat M, Yusuksawad M, Sereemaspun A, et al. Effect of purified Russell’s viper venom-factor X activator (RVV-X) on renal hemodynamics, renal functions, and coagulopathy in rats. Toxicon. 2011;58(3):230–238.
  • De Toni LG, Menaldo DL, Cintra AC, et al. Inflammatory mediators involved in the paw edema and hyperalgesia induced by batroxase, a metalloproteinase isolated from Bothrops atrox snake venom. Int Immunopharmacol. 2015;28(1):199–207.
  • Teixeira C, Cury Y, Moreira V, et al. Inflammation induced by Bothrops asper venom. Toxicon. 2009;54(7):988–997.
  • Mukherjee AK. A major phospholipase A2 from Daboia russelii russelii venom shows potent anticoagulant action via thrombin inhibition and binding with plasma phospholipids. Biochimie. 2014;99:153–161.
  • Mukherjee AK. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity. PLoS One. 2014;9(2):e86823.
  • Mukherjee AK, Mackessy SP. Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell’s viper (Daboia russelii russelii) and assessment of its therapeutic potential. Biochim Biophys Acta (BBA) Gen Sub. 2013;1830(6):3476–3488.
  • Thakur R, Mukherjee A. A brief appraisal on Russell’s viper venom (Daboia russelii russelii) proteinases.In: Gopalakrishnakone P, Inagaki H, Mukherjee AK, Rahmy TR, Vogel CW editors. Handbook Toxinol: Snake Venoms: Netherlands: Springer Nature; 2015;123–144.
  • Mukherjee AK, Dutta S, Mackessy SP. A new C-type lectin (RVsnaclec) purified from venom of Daboia russelii russelii shows anticoagulant activity via inhibition of FXa and concentration-dependent differential response to platelets in a Ca2+-independent manner. Thromb Res. 2014;134(5):1150–1156.
  • Saikia D, Bordoloi NK, Chattopadhyay P, et al. Differential mode of attack on membrane phospholipids by an acidic phospholipase A2 (RVVA-PLA2-I) from Daboia russelli venom. Biochim Biophys Acta (BBA) -Biomemb. 2012;1818(12):3149–3157.
  • Morais IC, Pereira GJ, Orzáez M, et al. L-Aminoacid oxidase from Bothrops leucurus venom induces nephrotoxicity via apoptosis and necrosis. PloS One. 2015;10:7.
  • Yamazaki Y, Matsunaga Y, Tokunaga Y, et al. Snake venom vascular endothelial growth factors (VEGF-Fs) exclusively vary their structures and functions among species. J Bio Chem. 2009;284(15):9885–9891.
  • Suchithra N, Pappachan J, Sujathan P. Snakebite envenoming in Kerala, South India: clinical profile and factors involved in adverse outcomes. Emer Med J. 2008;25(4):200–204.
  • Mukherjee AK, Dutta S, Kalita B, et al. Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell’s viper venom. Biochimie. 2016;128:138–147.
  • Mukherjee AK, Mackessy SP. Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom. Toxicon. 2014;89:55–66.
  • Mukherjee AK. Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res. 2010;1:37.
  • Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66(17):2851–2871.
  • Kumar JR, Basavarajappa BS, Arancio O, et al. Isolation and characterization of “Reprotoxin”, a novel protein complex from Daboia russelii snake venom. Biochimie. 2008;90(10):1545–1559.
  • Dutta S, Sinha A, Dasgupta S, et al. Binding of a Naja naja venom acidic phospholipase A2 cognate complex to membrane-bound vimentin of rat L6 cells: implications in cobra venom-induced cytotoxicity. Biochim Biophys Acta (BBA) -Biomemb. 2019;1861(5):958–977.
  • Maduwage K, Silva A, O’Leary MA, et al. Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focussed in vitro studies. Sci Rep. 2016;6:26778.
  • Kumar AV, Gowda TV. Novel non-enzymatic toxic peptide of Daboia russelii (Eastern region) venom renders commercial polyvalent antivenom ineffective. Toxicon. 2006;47(4):398–408.
  • Calvete JJ, Rodriguez Y, Quesada-Bernat S, et al. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon. 2018;148:107–122.
  • Thakur R, Mukherjee AK. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors. Toxicon. 2017;131:37–47.
  • White J. Snake venoms and coagulopathy. Toxicon. 2005;45(8):951–967.
  • Kemparaju K, Krishnakanth TP, Veerabasappa Gowda T. Purification and characterization of a platelet aggregation inhibitor acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom. Toxicon. 1999;37(12):1659–1671.
  • Jagadeesha DK, Shashidhara Murthy R, Girish KS, et al. A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon. 2002;40(6):667–675.
  • Saikia D, Thakur R, Mukherjee AK. An acidic phospholipase A2 (RVVA-PLA2-I) purified from Daboia russelli venom exerts its anticoagulant activity by enzymatic hydrolysis of plasma phospholipids and by non-enzymatic inhibition of factor Xa in a phospholipids/Ca2+ independent manner. Toxicon. 2011;57(6):841–850.
  • Mukherjee AK, Mackessy SP, Dutta S. Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int J Biol Macromol. 2014;67:154–162.
  • Thakur R, Chattopadhyay P, Mukherjee AK. The wound healing potential of a pro-angiogenic peptide purified from Indian Russell’s viper (Daboia russelii) venom. Toxicon. 2019;165:78–82.
  • Mukherjee AK, Saviola AJ, Burns PD, et al. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis. 2015;20(10):1358–1372.
  • Gomes A, Choudhury SR, Saha A, et al. A heat stable protein toxin (drCT-I) from the Indian viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities. Toxicon. 2007;49(1):46–56.
  • Mukherjee AK, Saikia D, Thakur R. Medical and diagnostic applications of snake venom proteomes. J Prot Proteom. 2013;2:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.