355
Views
2
CrossRef citations to date
0
Altmetric
Review

Approaching complexity: systems biology and ms-based techniques to address immune signaling

, &

References

  • McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol. 2018 Feb 21;120:5 1 1–5 1 11. PubMed PMID: 29512141; PubMed Central PMCID: PMCPMC5939936.
  • Liu AM, New DC, Lo RK, et al. Reporter gene assays. Methods Mol Biol. 2009;486:109–123. PubMed PMID: 19347619; eng.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. PubMed PMID: 19015660; eng.
  • Lowe R, Shirley N, Bleackley M, et al. Transcriptomics technologies. PLoS Comput Biol. 2017 May;13(5):e1005457. PubMed PMID: 28545146; PubMed Central PMCID: PMCPMC5436640. eng.
  • Konstantinou GN. Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol. 2017;1592:79–94. PubMed PMID: 28315213; eng.
  • Crowther J. Enzyme Linked Immunosorbent Assay (ELISA). In: Walker JM, Rapley R, editors. Molecular biomethods handbook. Totowa (NJ): Humana Press; 2008. p. 657–682.
  • Tay S, Hughey JJ, Lee TK, et al. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature. 2010 July 8;466(7303):267–271. PubMed PMID: 20581820; PubMed Central PMCID: PMCPMC3105528.
  • Sung MH, Li N, Lao Q, et al. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-kappaB signaling. Sci Signal. 2014 Jan 14;7(308):ra6. PubMed PMID: 24425788; PubMed Central PMCID: PMCPMC5381725.
  • Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–2394. PubMed PMID: 23438204; eng.
  • Yates JR 3rd. Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998 Jan;33(1):1–19. PubMed PMID: 9449829; eng.
  • Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445(4):683–693. PubMed PMID: 24556311; eng.
  • Jiang X, Chen ZJ. The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol. 2011 Dec 9;12(1):35–48. PubMed PMID: 22158412; PubMed Central PMCID: PMCPMC3864900.
  • Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity. 2016 July 19;45(1):15–30. PubMed PMID: 27438764.
  • Weintz G, Olsen JV, Fruhauf K, et al. The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol. 2010 June 8;6:371. PubMed PMID: 20531401; PubMed Central PMCID: PMCPMC2913394.
  • Sjoelund V, Smelkinson M, Nita-Lazar A. Phosphoproteome profiling of the macrophage response to different toll-like receptor ligands identifies differences in global phosphorylation dynamics. J Proteome Res. 2014 Nov 7;13(11):5185–5197. PubMed PMID: 24941444; PubMed Central PMCID: PMCPMC4227906.
  • Tan H, Yang K, Li Y, et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 2017 Mar 21;46(3):488–503. PubMed PMID: 28285833; PubMed Central PMCID: PMCPMC5466820.
  • Dittmar G, Winklhofer KF. Linear ubiquitin chains: cellular functions and strategies for detection and quantification. Front Chem. 2019;7:915. PubMed PMID: 31998699; PubMed Central PMCID: PMCPMC6966713.
  • Dybas JM, O’Leary CE, Ding H, et al. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4(+) T cells. Nat Immunol. 2019 June;20(6):747–755. PubMed PMID: 31061531; PubMed Central PMCID: PMCPMC7007700.
  • Lectez B, Migotti R, Lee SY, et al. Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. J Proteome Res. 2014 June 6;13(6):3016–3026. PubMed PMID: 24730562.
  • Sukumaran A, Coish JM, Yeung J, et al. Decoding communication patterns of the innate immune system by quantitative proteomics. J Leukoc Biol. 2019 Dec;106(6):1221–1232. PubMed PMID: 31556465; eng.
  • Montoya A, López MC, Vélez ID, et al. Label-free quantitative proteomic analysis reveals potential biomarkers for early healing in cutaneous leishmaniasis. PeerJ. 2019;6:e6228–e6228. PubMed PMID: 30648003; eng.
  • Wu P, Shang Q, Huang H, et al. Quantitative proteomics analysis provides insight into the biological role of Hsp90 in BmNPV infection in bombyx mori. J Proteomics. 2019 July 15;203:103379. PubMed PMID: 31102755; eng.
  • Hsu JL, Huang SY, Chow NH, et al. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem. 2003 Dec 15;75(24):6843–6852. PubMed PMID: 14670044; eng.
  • Boersema PJ, Raijmakers R, Lemeer S, et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc. 2009;4(4):484–494.
  • Ong S-E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–386.
  • McClatchy DB, Yates JR 3rd. Stable isotope labeling in mammals (SILAM). Methods Mol Biol. 2014;1156:133–146. PubMed PMID: 24791985; eng.
  • Picard G, Lebert D, Louwagie M, et al. PSAQ standards for accurate MS-based quantification of proteins: from the concept to biomedical applications. J Mass Spectrom. 2012 Oct;47(10):1353–1363. PubMed PMID: 23019168; eng.
  • Welle KA, Zhang T, Hryhorenko JR, et al. Time-resolved analysis of proteome dynamics by tandem mass tags and stable isotope labeling in cell culture (TMT-SILAC) hyperplexing. Mol Cell Proteomics. 2016 Dec;15(12):3551–3563. PubMed PMID: 27765818; PubMed Central PMCID: PMCPMC5141271. eng.
  • Howden AJM, Hukelmann JL, Brenes A, et al. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat Immunol. 2019 Nov;20(11):1542–1554. PubMed PMID: 31591570; PubMed Central PMCID: PMCPMC6859072.
  • Marchingo JM, Sinclair LV, Howden AJ, et al. Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. Elife. 2020 Feb 5;9. PubMed PMID: 32022686; PubMed Central PMCID: PMCPMC7056270. DOI:10.7554/eLife.53725
  • Koppenol-Raab M, Sjoelund V, Manes NP, et al. Proteome and secretome analysis reveals differential post-transcriptional regulation of toll-like receptor responses. Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S172–S186. PubMed PMID: 28235783; PubMed Central PMCID: PMCPMC5393387.
  • Adamo A, Brandi J, Caligola S, et al. Extracellular vesicles mediate mesenchymal stromal cell-dependent regulation of B cell PI3K-AKT signaling pathway and actin cytoskeleton. Front Immunol. 2019;10:446. PubMed PMID: 30915084; PubMed Central PMCID: PMCPMC6423067.
  • Gillen J, Nita-Lazar A. Experimental analysis of viral–host interactions [Review]. Front Physiol. 2019 [cited 2019 Apr 11];10(425). English. DOI:10.3389/fphys.2019.00425
  • Lum KK, Song B, Federspiel JD, et al. Interactome and proteome dynamics uncover immune modulatory associations of the pathogen sensing factor cGAS. Cell Syst. 2018 Dec 26;7(6):627–642 e6. PubMed PMID: 30471916; PubMed Central PMCID: PMCPMC6310102.
  • Ludwig C, Gillet L, Rosenberger G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018 Aug 13;14(8):e8126. PubMed PMID: 30104418; PubMed Central PMCID: PMCPMC6088389.
  • Caron E, Roncagalli R, Hase T, et al. Precise temporal profiling of signaling complexes in primary cells using SWATH mass spectrometry. Cell Rep. 2017 Mar 28;18(13):3219–3226. PubMed PMID: 28355572; PubMed Central PMCID: PMCPMC5382234.
  • Voisinne G, Garcia-Blesa A, Chaoui K, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016 July 29;12(7):876. PubMed PMID: 27474268; PubMed Central PMCID: PMCPMC4965873.
  • Voisinne G, Kersse K, Chaoui K, et al. Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics. Nat Immunol. 2019 Nov;20(11):1530–1541. PubMed PMID: 31591574; PubMed Central PMCID: PMCPMC6859066.
  • Roux KJ, Kim DI, Burke B, et al. BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci. 2018 Feb 21;91:19 23 1–19 23 15. PubMed PMID: 29516480; PubMed Central PMCID: PMCPMC6028010.
  • Branon TC, Bosch JA, Sanchez AD, et al. Efficient proximity labeling in living cells and organisms with turboid. Nat Biotechnol. 2018 Oct;36(9):880–887. PubMed PMID: 30125270; PubMed Central PMCID: PMCPMC6126969.
  • Rider MA, Cheerathodi MR, Hurwitz SN, et al. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology. 2018 Mar;516:55–70. PubMed PMID: 29329079; PubMed Central PMCID: PMCPMC5826876.
  • Salas D, Stacey RG, Akinlaja M, et al. Next-generation interactomics: considerations for the use of co-elution to measure protein interaction networks. Mol Cell Proteomics. 2020 Jan;19(1):1–10. PubMed PMID: 31792070; PubMed Central PMCID: PMCPMC6944233.
  • Tan CSH, Go KD, Bisteau X, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science. 2018 Mar 9;359(6380):1170–1177. PubMed PMID: 29439025.
  • Hashimoto Y, Sheng X, Murray-Nerger LA, et al. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat Commun. 2020 Feb 10;11(1):806. PubMed PMID: 32041945; PubMed Central PMCID: PMCPMC7010728.
  • Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc. 2019 June;14(6):1687–1707. PubMed PMID: 31092913.
  • Trentini DB, Pecoraro M, Tiwary S, et al. Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4099–4108. PubMed PMID: 32047030; PubMed Central PMCID: PMCPMC7049129.
  • Ilca FT, Neerincx A, Hermann C, et al. TAPBPR mediates peptide dissociation from MHC class I using a leucine lever. Elife. 2018 Nov 28;7. PubMed PMID: 30484775; PubMed Central PMCID: PMCPMC6307860. DOI:10.7554/eLife.40126
  • Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods. 2017 Dec;14(12):1156–1158. PubMed PMID: 28945703; eng.
  • Passarelli MK, Pirkl A, Moellers R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods. 2017 Dec;14(12):1175–1183. PubMed PMID: 29131162; eng.
  • Garza KY, Feider CL, Klein DR, et al. Desorption electrospray ionization mass spectrometry imaging of proteins directly from biological tissue sections. Anal Chem. 2018 July 3;90(13):7785–7789. PubMed PMID: 29800516; PubMed Central PMCID: PMCPMC6102199. eng.
  • Holzlechner M, Strasser K, Zareva E, et al. In situ characterization of tissue-resident immune cells by MALDI mass spectrometry imaging. J Proteome Res. 2017 Jan 6;16(1):65–76. PubMed PMID: 27755872; eng.
  • Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90–96. PubMed PMID: 27842060; eng.
  • Geier B, Sogin EM, Michellod D, et al. Spatial metabolomics of in situ host-microbe interactions at the micrometre scale. Nat Microbiol. 2020 Mar;5(3):498–510. PubMed PMID: 32015496; eng.
  • Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016 May 5;165(4):780–791. PubMed PMID: 27153492; PubMed Central PMCID: PMCPMC4860251.
  • Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009 Aug 15;81(16):6813–6822. PubMed PMID: 19601617.
  • Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol. 2013 Aug;25(4):484–494. PubMed PMID: 23999316; PubMed Central PMCID: PMCPMC3835664.
  • Specht H, Harmange G, Perlan DH, et al. Automated sample preparation for high-throughput single-cell proteomics. BioRxiv. 2018. DOI:10.1101/399774
  • Budnik B, Levy E, Harmange G, et al. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018 Oct 22;19(1):161. PubMed PMID: 30343672; PubMed Central PMCID: PMCPMC6196420.
  • Dou M, Clair G, Tsai CF, et al. High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform. Anal Chem. 2019 Oct 15;91(20):13119–13127. PubMed PMID: 31509397.
  • Chevrier N, Mertins P, Artyomov MN, et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell. 2011 Nov 11;147(4):853–867. PubMed PMID: 22078882; PubMed Central PMCID: PMCPMC3809888.
  • Mertins P, Przybylski D, Yosef N, et al. An integrative framework reveals signaling-to-transcription events in toll-like receptor signaling. Cell Rep. 2017 June 27;19(13):2853–2866. PubMed PMID: 28658630; PubMed Central PMCID: PMCPMC5551420.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008 Dec;8(12):958–969. PubMed PMID: 19029990; PubMed Central PMCID: PMCPMC2724991.
  • Ogino S, Nowak JA, Hamada T, et al. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol. 2019 Jan 24;14:83–103. PubMed PMID: 30125150; PubMed Central PMCID: PMCPMC6345592.
  • Ogino S, Nowak JA, Hamada T, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018 June;67(6):1168–1180. PubMed PMID: 29437869; PubMed Central PMCID: PMCPMC5943183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.