361
Views
3
CrossRef citations to date
0
Altmetric
Review

Proteomic interrogation of antibiotic resistance and persistence in Escherichia coli – progress and potential for medical research

, , , &
Pages 393-409 | Received 15 Mar 2020, Accepted 16 Jun 2020, Published online: 27 Jun 2020

References

  • Livermore DM. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother. 2011;66:1941–1944.
  • Saga T, Yamaguchi K. History of antimicrobial agents and resistant. Jpn Med Assoc J. 2009;137:103–108.
  • Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146:837.
  • Rather IA, Kim BC, Bajpai VK, et al. Self-medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi J Biol Sci. 2017;24:808–812.
  • Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot. 2017;70:520–526.
  • Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis. 2016;62:e51–77.
  • WHO. Antimicrobial resistance: global report on surveillance. 2014; Geneva: World Health Organisation.
  • Thabit AK, Crandon JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015;16:159–177.
  • Bigger JW. Treatment of Staphylococcal infections with penicillin. Lancet. 1944;244:497–500.
  • Jung SH, Ryu CM, Kim JS. Bacterial persistence: fundamentals and clinical importance. J Microbiol. 2019;57:829–835.
  • Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2012;109:5809–5814.
  • Hayden HS, Lim R, Brittnache MJ, et al. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One. 2012;7:e36507.
  • Windels EM, Michiels JE, Fauvart M, et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. Isme J. 2019;13:1239–1251.
  • Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe. 2013;13:632–642.
  • Levin‑Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–830.
  • Poirel L, Madec JY, Lupo A, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6:1–27.
  • Keren I, Shah D, Spoering A, et al. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol. 2004;186:8172–8180.
  • Shan Y, Gandt AB, Rowe SE, et al. ATP-dependent persister formation in Escherichia coli. mBio. 2017;8:e02267–16.
  • Lee PS, Lee KH. Escherichia coli - a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng. 2003;84:801–814.
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–4021.
  • Pulido M, García-Quintanilla M, Gil-Marqués ML, et al. Identifying targets for antibiotic development using omics technologies. Drug Discov Today. 2016;21:465–472.
  • Marx V. A dream of single-cell proteomics. Nat Methods. 2019;16:809–812.
  • Amani J, Mirhosseini SA, Fooladi AA. A review approaches to identify enteric bacterial pathogens. Jundishapur J Microbiol. 2015;8:e17473.
  • Esfandiari P, Amani J, Fouladi AA, et al. Rapid specific and polymerase chain reaction-enzyme linked immunosorbent assay for detection of Escherichia coli LT toxin from clinical isolates. Arch Clin Infect Dis. 2017;12:e36261.
  • Cardona-Arias JA, Orrego-Marin CP, Henao-ejia CP. Prevalencia de infección urinaria, uropatógenos y perfil de susceptibilidad antimicrobiana, medellín 2011-2012. Acta Médica Colombiana. 2014;39:352–358.
  • Piras C, Soggiu A, Bonizzi L, et al. Comparative proteomics to evaluate multi-drug resistance in Escherichia coli. Mol Biosyst. 2012;8:1060–1067.
  • Pormohammad A, Nasiri MJ, Azimi T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist. 2019;12:1181–1197.
  • Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in gram-negative organisms. Int J Antimicrob Agents. 2017;49:526–535.
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016; https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
  • Eiamphungporna W, Yainoya S, Jumderm C, et al. Prevalence of the colistin resistance gene mcr-1 in colistin-resistant isolated from humans in Thailand. J Glob Antimicrob Resistance. 2018;15:32–35.
  • Alegría Á, Arias-Temprano M, Fernández-Natal I, et al. Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. Int J Environ Res Public Health. 2020;17:1312.
  • Frantzi M, Latosinska A, Mischak H. Proteomics in drug development: the dawn of a new era? Proteomics Clin Appl. 2019;13:e1800087.
  • Gil C, Monteoliva L. Trends in microbial proteomics. J Proteomics. 2014;97:1–2.
  • Vranakis I, Goniotakis I, Psaroulaki A, et al. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics. 2014;97:88–99.
  • Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev. 2016;40:323–342.
  • Bąchor R, Waliczek M, Stefanowicz P, et al. Trends in the design of new isobaric labeling reagents for quantitative proteomics. Molecules. 2019;24:701.
  • Liu X, Wang JP, Chen M, et al. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Vet Res. 2019;15:224.
  • Su YB, Kuang SF, Peng XX, et al. The depressed P cycle contributes to the acquisition of ampicillin resistance in Edwardsiella piscicida. J Proteomics. 2020;212:103562.
  • Pais P, Costa C, Pires C, et al. Membrane proteome-wide response to the antifungal drug clotrimazole in Candida glabrata: role of the transcription factor CgPdr1 and the drug: H+ antiporters CgTpo1_1 and CgTpo1_2. Mol Cell Proteomics. 2016;15:57–72.
  • Li WX, Yao ZJ, Zhang XY, et al. Global protein expression profile response of planktonic Aeromonas hydrophila exposed to chlortetracycline. World J Microbiol Biotechnol. 2017;33:68.
  • Wang JR, Zhang JL, Fu Q, et al. Proteomic analyses uncover the mechanisms underlying antibiotic resistance differences among three Acinetobacter baumannii isolates. J Mol Microbiol Biotechnol. 2016;26:401–409.
  • Li WX, Wang GB, Zhang S, et al. An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. J Proteomics. 2019;194:148–159.
  • Zhang L, Chen XQ, Song JY, et al. Comparative proteomics analysis of Escherichia coli in response to barofloxacin stress. Biotech Bulletin. 2019;35:103–109.
  • Li H, Wang YY, Meng QS, et al. Comprehensive proteomic and metabolomic profiling of mcr-1-mediated colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2019;53:795–804.
  • Vidova V, Spaci Z. A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal Chim Acta. 2017;964:7–23.
  • Saleh S, Staes A, Deborggraeve S, et al. Targeted proteomics for studying pathogenic bacteria. Proteomics. 2019;16:e1800435.
  • Grundt A, Findeisen P, Miethke T, et al. Rapid detection of ampicillin resistance in Escherichia coli by quantitative mass spectrometry. J Clin Microbiol. 2012;50:1727–1729.
  • Haag AM, Medina AM, Royall AE, et al. Monitoring bacterial resistance to chloramphenicol and other antibiotics by liquid chromatography electrospray ionization tandem mass spectrometry using selected reaction monitoring. J Mass Spectrom. 2013;48:732–739.
  • Ke M, Shen HN, Wang LJ, et al. Identification, quantification, and site localization of protein posttranslational modifications via mass spectrometry-based proteomics. Adv Exp Med Biol. 2016;919:345–382.
  • Hennrich ML, Gavin AC. Quantitative mass spectrometry of posttranslational modifications: keys to confidence. Sci Signal. 2015;8:re5.
  • Olsen JV, Mann M. Status of large-scale analysis of posttranslational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12:3444–3452.
  • Mertins P, Qiao JW, Patel J, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods. 2013;10:634–637.
  • Van der Wal L, Bezstarosti K, Sap KA, et al. Improvement of ubiquitylation site detection by Orbitrap mass spectrometry. J Proteomics. 2018;172:49–56.
  • Cole J, Hanson EJ, James DC, et al. Comparison of data-acquisition methods for the identification and quantification of histone post-translational modifications on a Q exactive HF hybrid quadrupole Orbitrap mass spectrometer. Rapid Commun Mass Spectrom. 2019;33:897–906.
  • Yu Q, Shi XD, Feng Y, et al. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies. Anal Chim Acta. 2017;968:40–49.
  • Udeshi ND, Mani DC, Satpathy S, et al. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat Commun. 2020;11:359.
  • Storey AJ, Hardman RE, Byrum SD, et al. Accurate and sensitive quantitation of the dynamic heat shock proteome using tandem mass tag. J Proteome Res. 2020;19:1183–1195.
  • Soares NC, Spät P, Méndez JA, et al. Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. J Proteomics. 2014;102:113–124.
  • Xie L, Wang X, Zeng J, et al. Proteome-wide lysine acetylation profling of the human pathogen Mycobacterium tuberculosis. Int J Biochem Cell Biol. 2015;59:193–202.
  • Potel CM, Lin MH, Heck AJR, et al. Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nat Methods. 2018;15:187–190.
  • Potel CM, Lin MH, Heck AJR, et al. Defeating major contaminants in Fe(3+)- immobilized metal ion affinity chromatography (IMAC) phosphopeptide enrichment. Mol Cell Proteomics. 2018;17:1028–1034.
  • Lin MH, Potel CM, Tehrani KHME, et al. New tool to reveal bacterial signaling mechanisms in antibiotic treatment and resistance. Mol Cell Proteomics. 2018;17:2496–2507.
  • Tiwari S, Jamal SB, Hassan SS, et al. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front Microbiol. 2017;8:1878.
  • Frost LS, Koraimann G. Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol. 2010;5:1057–1071.
  • Vega NM, Allison KR, Khalil AS, et al. Signaling-mediated bacterial persister formation. Nat Chem Biol. 2012;8:431–433.
  • Blair JMA, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
  • Zgurskaya HI, Rybenkov VV, Krishnamoorthy G, et al. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res Microbiol. 2018;169:351–356.
  • Zabawa TP, Pucci MJ, Parr TR, et al. Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.
  • Zgurskaya HI, Rybenkov VV. Permeability barriers of gram-negative pathogens. Ann NY Acad Sci. 2020;1459:5–18.
  • Peng B, Li H, Peng XX. Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Rev Proteomics. 2019;16:829–839.
  • Li WX, Zhang S, Wang XY, et al. Systematically integrated metabonomic-proteomic studies of Escherichia coli under ciprofloxacin stress. J Proteomics. 2018;179:61–70.
  • Lin XM, Yang MJ, Li H, et al. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. J Proteome. 2014;98:244–253.
  • Qi J, Du YJ, Bai H, et al. Global protein expression profile response of Escherichia coli ATCC 25922 exposed to enrofloxacin. Microb Drug Resisr. 2013;19:6–14.
  • Kalule JB, Fortuin S, Calder B, et al. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™STEC media. J Proteomics. 2018;180:25–35.
  • Li H, Lin XM, Wang SY, et al. Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli. J Proteome Res. 2007;6:3628–3636.
  • Ramos S, Silva N, Hébraud M, et al. Proteomics for drug resistance on the food chain? Multidrug-resistant Escherichia coli proteomes from slaughtered pigs. OMICS. 2016;20:362–374.
  • Jin M, Lu J, Chen ZY, et al. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int. 2018;120:421–430.
  • Pinto L, Torres C, Gil C, et al. Multiomics assessment of gene expression in a clinical strain of CTX-M-15-producing ST131 Escherichia coli. Front Microbiol. 2019;10:831.
  • Kumar D, Bansal G, Narang A, et al. Integrating transcriptome and proteome profiling: strategies and applications. Proteomics. 2016;16:2533–2544.
  • Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25:661–681.
  • Hart EM, Mitchell AM, Konovalova A, et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci U S A. 2019;116:21748–21757.
  • Zabawa TP, Pucci MJ, Parr TR Jr, et al. Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.
  • Lin L, Nonejuie P, Munguia J, et al. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine. 2015;2:690–698.
  • Mohamed YF, Abou-Shleib HM, Khalil AM, et al. Membrane permeabilization of colistin toward pan-drug resistant gram-negative isolates. Braz J Microbiol. 2016;47:381–388.
  • Ofek I, Cohen S, Rahmani R, et al. Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother. 1994;38:374–377.
  • Vaara M, Siikanen O, Apajalahti J, et al. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother. 2010;54:3341–3346.
  • Corbett D, Wise A, Langley T, et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother. 2017;61:e00200–17.
  • Goldberg K, Sarig H, Zaknoon F, et al. Sensitization of gram-negative bacteria by targeting the membrane potential. Faseb J. 2013;27:3818–3826.
  • Livne L, Epand RF, Papahadjopoulos-Sternberg B, et al. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. Faseb J. 2010;24:5092–5101.
  • Jammal J, Zaknoon F, Kaneti G, et al. Sensitization of gram-negative bacteria to rifampin and OAK combinations. Sci Rep. 2015;5:9216.
  • Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol. 2015;6:421.
  • Eicher T, Cha HJ, Seeger MA, et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci USA. 2012;109:5687–5692.
  • Abdel-Halim H, Al Dajani A, Abdelhalim A, et al. The search of potential inhibitors of the AcrAB–TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol. 2019;103:6309–6318.
  • Reza A, Sutton JM, Rahman KM. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics (Basel). 2019;8:229.
  • Misra R, Morrison KD, Cho HJ, et al. Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J Bacteriol. 2015;197:2479–2488.
  • Wang YH, Mowla R, Ji SL, et al. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem. 2018;143:699–709.
  • Sjuts H, Vargiu AV, Kwasny SM, et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A. 2016;113:3509–3514.
  • Hegarty JP, Stewart DB Sr. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol. 2018;102:1055–1065.
  • Greenberg DE, Marshall-Batty KR, Brinster LR, et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis. 2010;201:1822–1830.
  • Parker A, Gottesman S. Small RNA regulation of tolC, the outer membrane component of bacterial multidrug transporters. J Bacteriol. 2016;198:1101–1113.
  • Choi JS, Kim W, Suk S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol. 2018;15:1319–1335.
  • Ayhan DH, Tamer YT, Akbar M, et al. Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. PLoS Biol. 2016;14:e1002552.
  • Ayaz M, Subhan F, Sadiq A, et al. Cellular efflux transporters and the potential role of natural products in combating efflux mediated drug resistance. Front Biosci (Landmark ED). 2017;22:732–756.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–335.
  • Kumar V, Shriram V, Mulla J. Antibiotic resistance reversal of multiple drug resistant bacteria using Piper longum fruit extract. J Appl Pharm Sci. 2013;3:112–116.
  • Prasch S, Bucar F. Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev. 2015;14:961.
  • Hwang D, Lim YH. Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiol Lett. 2019;366:fnz030.
  • Wei SM, Yang YF, Tian W, et al. Synergistic activity of fluoroquinolones combining with artesunate against multidrug-resistant Escherichia coli. Microb Drug Resist. 2020;26:81–88.
  • Zhou XZ, Jia F, Liu XM, et al. Total alkaloids of Sophorea alopecuroides induced down-regulation of AcrAB-TolC efflux pump reverses susceptibility to ciprofloxacin in clinical multidrug resistant Escherichia coli isolates. Phytother Res. 2012;26:1637–1643.
  • Ohene-Agyei T, Mowla R, Rahman T, et al. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen. 2014;3:885–896.
  • Wang YH, Alenzy R, Song D, et al. Structural optimization of natural product nordihydroguaretic acid to discover novel analogues as AcrB inhibitors. Eur J Med Chem. 2020;186:111910.
  • Helaine S, Kugelberg E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 2014;22:417–424.
  • Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354:aaf4268.
  • Michiels JE, Van den Bergh B, Verstraeten N, et al. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat. 2016;29:76–89.
  • Kaldalu N, Hauryliuk V, Tenson T. Persisters - as elusive as ever. Appl Microbiol Biotechnol. 2016;100:6545–6553.
  • Lippolis JD, Holman DB, Brunelle BW, et al. Genomic and transcriptomic analysis of Escherichia coli strains associated with persistent and transient bovine mastitis and the role of colanic acid. Infect Immun. 2017;86:e00566–17.
  • Hu Y, Coates AR. Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett. 2005;243:117–124.
  • Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–131.
  • Sulaiman JE, Hao C, Lam H. Specific enrichment and proteomics analysis of Escherichia coli persisters from rifampin pretreatment. J Proteome Res. 2018;17:3984–3996.
  • Windels EM, Meriem ZB, Zahir T, et al. Enrichment of persisters enabled by a β-lactam-induced filamentation method reveals their stochastic single-cell awakening. Commun Biol. 2019;2:426.
  • Shah D, Zhang ZG, Khodursky A, et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53.
  • Johnson PJT, Levin BR. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 2013;9:e1003123.
  • Kwan BW, Valenta JA, Benedik MJ, et al. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother. 2013;57:1468–1473.
  • Cañas-Duarte SJ, Restrepo S, Pedraza JM. Novel protocol for persister cells isolation. Plos One. 2014;9:e88660.
  • Radzikowski JL, Vedelaar S, Siegel D, et al. Bacterial persistence is an active σS stress pesponse to metabolic flux limitation. Mol Syst Biol. 2016;12:882.
  • Fridman O, Goldberg A, Ronin I, et al. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 2014;513:418–421.
  • Van den Bergh B, Michiels JE, Wenseleers T, et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol. 2016;1:16020.
  • Sulaiman JE, Lam H. Proteomic investigation of tolerant Escherichia coli populations from cyclic antibiotic treatment. J Proteome Res. 2020;19:900–913.
  • Norton JP, Mulvey MA. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog. 2012;8:e1002954.
  • Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157:539–548.
  • Schumacher MA, Balani P, Min J, et al. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature. 2015;524:59–64.
  • Fernández-García L, Blasco L, Lopez M, et al. Toxin-antitoxin systems in clinical pathogens. Toxins(basel). 2016;8:227.
  • Korch SB, Hill TM. Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: effects on macromolecular synthesis and persister formation. J Bacteriol. 2006;188:3826–3836.
  • Maisonneuve E, Shakespeare LJ, Jørgensen MG, et al. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A. 2011;108:13206–13211.
  • Li TG, Yin N, Liu HB, et al. Novel inhibitors of toxin HipA reduce multidrug tolerant persisters. ACS Med Chem Lett. 2016;7:449–453.
  • Bokinsky G, Baidoo EEK, Akella S, et al. HipA-triggered growth arrest and beta-lactam tolerance in Escherichia coli are mediated by RelA-dependent p(ppGpp) synthesis. J Bacteriol. 2013;195:3173–3182.
  • Verstraeten N, Knapen WJ, Kint CL, et al. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell. 2015;59:9–21.
  • Svenningsen MS, Veress A, Harms A, et al. Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells. Sci Rep. 2019;9:6056.
  • Wexselblatt E, Katzhendler J, Saleem-Batcha R, et al. ppGpp analogues inhibit synthetase activity of rel proteins from gram-negative and gram-positive bacteria. Bioorg Med Chem. 2010;18:4485–4497.
  • Dahl JU, Gray MJ, Bazopoulou D, et al. The antiinflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat Microbiol. 2017;2:16267.
  • Usui M, Yokoo H, Tamura Y, et al. Zinc acetate potentiates the action of tosufloxacin against Escherichia coli biofilm persisters. Antimicrob Agents Chemother. 2019;63:19.
  • Lee JH, Kim YG, Kim CJ, et al. Indole-3-acetaldehyde from rhodococcus sp. BFI 332 inhibits Escherichia coli O157: H7biofilm formation. Appl Microbiol Biotechnol. 2012;96:1071–1078.
  • Pu YY, Zhao ZL, Li YX, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell. 2016;62:284–294.
  • Varga ZG, Armada A, Cerca P, et al. Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In vivo. 2012;26:277–285.
  • Tsai CF, Zhao R, Williams SM, et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol Cell Proteomics. 2020;19:828–838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.