209
Views
1
CrossRef citations to date
0
Altmetric
Review

Lessons learned from proteome analysis of perinatal neurovascular pathologies

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Mallick AA, O’Callaghan FJ. The epidemiology of childhood stroke. Eur J Paediatr Neurol. 2010;14:197–205.
  • Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet. 2016;388:3027–3035.
  • FDA-NIH Biomarker Working Group. BEST (biomarkers, EndpointS, and other tools) resource. Silver spring (MD): Food and Drug Administration (US); 2016.
  • Chabrier S, Husson B, Dinomais M, et al. New insights (and new interrogations) in perinatal arterial ischemic stroke. Thromb Res. 2011;127:13–22.
  • Grunt S, Mazenauer L, Buerki SE, et al. Incidence and outcomes of symptomatic neonatal arterial ischemic stroke. Pediatrics. 2015;135:e1220–8.
  • Berfelo FJ, Kersbergen KJ, van Ommen CH, et al. Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke. 2010;41:1382–1388.
  • Cole L, Dewey D, Letourneau N, et al. Clinical characteristics, risk factors, and outcomes associated with neonatal hemorrhagic stroke: A population-based case-control study. JAMA Pediatr. 2017;171:230–238.
  • Sirgiovanni I, Avignone S, Groppo M, et al. Intracranial haemorrhage: an incidental finding at magnetic resonance imaging in a cohort of late preterm and term infants. Pediatr Radiol. 2014;44:289–296.
  • Kirton A, Deveber G. Life after perinatal stroke. Stroke. 2013;44:3265–3271.
  • Volpe JJ. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr. 2008;153:160–163.
  • Kadri H, Mawla AA, Kazah J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst. 2006;22(9):1086–1090.
  • Greenham M, Gordon A, Anderson V, et al. Outcome in childhood stroke. Stroke. 2016;47:1159–1164.
  • Lehman LL, Khoury JC, Taylor JM, et al. Pediatric stroke rates over 17 years: report from a population-based study. J Child Neurol. 2018;33:463–467.
  • Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86:329–338.
  • Pierrat V, Haouari N, Liska A, et al. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: population based study. Arch Dis Child Fetal Neonatal Ed. 2005;90:F257–F61.
  • Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953;32(4):260–267.
  • Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696–705.
  • Massaro AN, Wu YW, Bammler TK, et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2018;194:67–75.e1.
  • Sanchez-Illana A, Piñeiro-Ramos JD, Kuligowski J. Small molecule biomarkers for neonatal hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med. 2020;25(2):101084.
  • Graham EM, Everett AD, Delpech JC, et al. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art. Curr Opin Pediatr. 2018;30(2):199–203.
  • Murray DM. Biomarkers in neonatal hypoxic-ischemic encephalopathy-Review of the literature to date and future directions for research. Handb Clin Neurol. 2019;162:281–293.
  • Zhu Y, Yun Y, Jin M, et al. Identification of novel biomarkers for neonatal hypoxic-ischemic encephalopathy using iTRAQ. Ital J Pediatr. 2020 24;46(1):67.
  • Rice III JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–141.
  • de Castro P, Vázquez M, Miranda MC. Ictus infantil: conceptos, peculiaridades y epidemiología. In: Castro de Castro P, Vázquez López M, editors. Ictus en la infancia. 1st ed. Barcelona (Spain): Viguera; 2012. p. 1–14.
  • Harteman JC, Groenendaal F, Kwee A, et al. Risk factors for perinatal arterial ischaemic stroke in full-term infants: a case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F411–F6.
  • Mineyko A, Narendran A, Fritzler ML, et al. Inflammatory biomarkers of pediatric focal cerebral arteriopathy. Neurology. 2012;79:1406–1408.
  • Armstrong-Wells J, Johnston SC, Wu YW, et al. Prevalence and predictors of perinatal hemorrhagic stroke: results from the kaiser pediatric stroke study. Pediatrics. 2009;123:823–828.
  • Rivkin MJ, Bernard TJ, Dowling MM, et al. Guidelines for urgent management of stroke in children. Pediatr Neurol. 2016;56:8–17.
  • Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.
  • Mackay MT, Monagle P, Babl FE. Improving diagnosis of childhood arterial ischaemic stroke. Expert Rev Neurother. 2017;17:1157–1165.
  • Fullerton HJ, Wintermark M, Hills NK, et al. Risk of recurrent arterial ischemic stroke in childhood: a prospective international study. Stroke. 2016;47:53–59.
  • Gandhi SK, McKinney JS, Sedjro JE, et al. Temporal trends in incidence and long-term case fatality of stroke among children from 1994 to 2007. Neurology. 2012;78:1923–1929.
  • Lanthier S, Carmant L, David M, et al. Stroke in children: the coexistence of multiple risk factors predicts poor outcome. Neurology. 2000;54:371–378.
  • Amlie-Lefond C, Wainwright MS. Response by Amlie-Lefond and Wainwright to letter regarding article, “Organizing for acute arterial ischemic stroke in children. Stroke. 2020;51(2):e37.
  • Gennaro M, Mattiello A, Pizzorusso T. Rodent models of developmental ischemic stroke for translational research: strengths and weaknesses. Neural Plast. 2019;4:5089321.
  • Manaenako A, Chen H, Zhang JH, et al. Comparison of different preclinical models of intracerebral haemorrhage. Acta Neurochir Suppl. 2011;111:9–14.
  • Dawes WJ, Zhang X, Fancy SPJ, et al. Moderate-grade germinal matrix haemorrhage activates cell division in the neonatal mouse subventricular zone. Dev Neurosci. 2016;38:430–444.
  • Ramiro L, Simats A, Garcia-Berrocoso T, et al. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord. 2018;11:1756286418789340.
  • Bersani I, Auriti C, Ronchetti MP, et al. Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives. Biomed Res Int. 2015;2015:253520.
  • Gazzolo D, Abella R, Frigiola A, et al. Neuromarkers and unconventional biological fluids. J Matern Fetal Neonatal Med. 2010;23(Suppl 3):66–69.
  • Hsiao CC, Chang JC, Tsao LY, et al. correlates of elevated interleukin-6 and 8-hydroxy-2ʹ-deoxyguanosine levels in tracheal aspirates from very low birth weight infants who develop bronchopulmonary dysplasia. Pediatr Neonatol. 2017;58:63–69.
  • Massaro AN, Wu YW, Bammler TK, et al. Dried blood spot compared to plasma measurements of blood-based biomarkers of brain injury in neonatal encephalopathy. Pediatr Res. 2019;85:655–661.
  • Echan LA, Tang HY, Ali-Khan N, et al. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics. 2005;5:3292–3303.
  • Chace DH, Hannon WH. Filter paper as a blood sample collection device for newborn screening. Clin Chem. 2016;62:423–425.
  • Chambers AG, Percy AJ, Yang J, et al. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics. 2015;14:3094.
  • Ozcan S, Cooper JD, Lago SG, et al. Towards reproducible MRM based biomarker discovery using dried blood spots. Sci Rep. 2017;7:45178.
  • Reiber H. Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci. 2003;21:79–96.
  • Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–122.
  • Zougman A, Pilch B, Podtelejnikov A, et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res. 2008;7:386–399.
  • Marklund N, Farrokhnia N, Hanell A, et al. Monitoring of beta-amyloid dynamics after human traumatic brain injury. J Neurotrauma. 2014;31:42–55.
  • Sutphen CL, Jasielec MS, Shah AR, et al. Longitudinal cerebrospinal fluid biomarker changes in preclinical alzheimer disease during middle age. JAMA Neurol. 2015;72:1029–1042.
  • Tarnaris A, Toma AK, Chapman MD, et al. Rostrocaudal dynamics of CSF biomarkers. Neurochem Res. 2011;36:528–532.
  • Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int. 2004;65:323–332.
  • Siwy J, Mullen W, Golovko I, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics Clin Appl. 2011;5:367–374.
  • Sweetman DU, Onwuneme C, Watson WR, et al. Perinatal asphyxia and erythropoietin and VEGF: serial serum and cerebrospinal fluid responses. Neonatology. 2017;111:253–259.
  • Jovandaric MZ, Milenkovic SJ. Neurological impairments in hypoxic neonates and lactate levels. Neurol Res. 2018;40:822–827.
  • Bauca JM, Martinez-Morillo E, Diamandis EP. Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem. 2014;60:1052–1061.
  • Marimuthu A, O’Meally RN, Chaerkady R, et al. A comprehensive map of the human urinary proteome. J Proteome Res. 2011;10:2734–2743.
  • Al-Rawi NH, Atiyah KM. Salivary neuron specific enolase: an indicator for neuronal damage in patients with ischemic stroke and stroke-prone patients. Clin Chem Lab Med. 2009;47:1519–1524.
  • Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85:162–169.
  • Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, et al. Saliva diagnostics - current views and directions. Exp Biol Med. 2017;242:459–472.
  • Loo JA, Yan W, Ramachandran P, et al. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89:1016–1023.
  • Mehta A, Chawla D, Kaur J, et al. Salivary lactate dehydrogenase levels can provide early diagnosis of hypoxic-ischaemic encephalopathy in neonates with birth asphyxia. Acta Paediatr. 2015;104:e236–e40.
  • Elverdin JC, Chiarenza AP, Frid AB, et al. Effects of chronic hypoxia on the secretory responses of rat salivary glands. Arch Oral Biol. 1995;40:459–462.
  • Terrizzi AR, Conti MI, Martinez MP, et al. The process of acclimation to chronic hypoxia leads to submandibular gland and periodontal alterations: an insight on the role of inflammatory mediators. Mediators Inflamm. 2018;2018:6794508.
  • Seidel BM, Schubert S, Schulze B, et al. Secretory IgA, free secretory component and IgD in saliva of newborn infants. Early Hum Dev. 2001;62:159–164.
  • Bagci S, Mueller A, Reinsberg J, et al. Saliva as a valid alternative in monitoring melatonin concentrations in newborn infants. Early Hum Dev. 2009;85:595–598.
  • McGuirt D. Alternatives to sedation and general anesthesia in pediatric magnetic resonance imaging: a literature review. Radiol Technol. 2016;88:18–26.
  • Barkovich MJ, Li Y, Desikan RS, et al. Challenges in pediatric neuroimaging. Neuroimage. 2019;185:793–801.
  • Douglas-Escobar M, Weiss MD. Biomarkers of brain injury in the premature infant. Front Neurol. 2012;3:185.
  • He T. Implementation of proteomics in clinical trials. Proteomics Clin Appl. 2019;13:e1800198.
  • Faa G, Messana I, Fanos V, et al. Proteomics applied to pediatric medicine: opportunities and challenges. Expert Rev Proteomics. 2016;13:883–894.
  • Ignjatovic V, Lai C, Summerhayes R, et al. Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One. 2011;6:e17213.
  • McCafferty C, Chaaban J, Ignjatovic V. Plasma proteomics and the paediatric patient. Expert Rev Proteomics. 2019;16:401–411.
  • Goldenberg NA, Everett AD, Graham D, et al. Proteomic and other mass spectrometry based “omics” biomarker discovery and validation in pediatric venous thromboembolism and arterial ischemic stroke: current state, unmet needs, and future directions. Proteomics Clin Appl. 2014;8:828–836.
  • Ning M, Lopez M, Cao J, et al. Application of proteomics to cerebrovascular disease. Electrophoresis. 2012;33:3582–3597.
  • Castagnola M, Uda F, Noto A, et al. The triple-I (interactive, intersectorial, interdisciplinary) approach to validate “omics” investigations on body fluids and tissues in perinatal medicine. J Matern Fetal Neonatal Med. 2014;27(Suppl 2):58–60.
  • Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007;5:77–85.
  • Araki Y, Yoshikawa K, Okamoto S, et al. Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS. BMC Neurol. 2010;10:112.
  • Maruwaka M, Yoshikawa K, Okamoto S, et al. Biomarker research for moyamoya disease in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. J Stroke Cerebrovasc Dis. 2015;24:104–111.
  • Schilde LM, Kosters S, Steinbach S, et al. Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research. PLoS One. 2018;13:e0206478.
  • Liumbruno GM, Franchini M. Proteomic analysis of venous thromboembolism: an update. Expert Rev Proteomics. 2013;10:179–188.
  • Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–477.
  • Gullberg M, Gustafsdottir SM, Schallmeiner E, et al. Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A. 2004;101:8420–8424.
  • Lundberg M, Eriksson A, Tran B, et al. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102.
  • Lundberg M, Thorsen SB, Assarsson E, et al. Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material. Mol Cell Proteomics. 2011;10:M110 004978.
  • Robinson RA, Amin B, Guest PC. Multiplexing biomarker methods, proteomics and considerations for Alzheimer’s disease. Adv Exp Med Biol. 2017;974:21–48.
  • Li Y, Dammer EB, Zhang-Brotzge X, et al. Osteopontin is a blood biomarker for microglial activation and brain injury in experimental hypoxic-ischemic encephalopathy. eNeuro. 2017;4:1–8.
  • Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9:e95192.
  • Rivera-Espinosa L, Toledo-Lopez A, Chavez-Pacheco JL, et al. Determination of blood dexmedetomidine in dried blood spots by LC-MS/MS to screen therapeutic levels in paediatric patients. PLoS One. 2019;14:e0210391.
  • Arora A, Somasundaram K. Targeted proteomics comes to the benchside and the bedside: is it ready for us? Bioessays. 2019;41:e1800042.
  • Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol. 2018;527(13):2087–2211.
  • Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics. 2013;14(2):91–110.
  • Efstathiou N, Theodoridis G, Sarafidis K. Understanding neonatal hypoxic-ischemic encephalopathy with metabolomics. Hippokratia. 2017;21(3):115–123.
  • Montaner J, Ramiro L, Simats A, et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol. 2020;16(5):247–264.
  • Sowers JL, Wu P, Zhang K, et al. Proteomic changes in traumatic brain injury: experimental approaches. Curr Opin Neurol. 2018;31(6):709–717.
  • Zheng F, Zhou YT, Zeng YF, et al. Proteomics analysis of brain tissue in a rat model of ischemic stroke in the acute phase. Front Mol Neurosci. 2020;13:27.
  • Clowry GJ, Basuodan R, Chan F. What are the best animal models for testing early intervention in cerebral palsy? Front Neurol. 2014;5:258.
  • Garton T, Hua Y, Xiang J, et al. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets. 2017;21:1111–1122.
  • Lekic T, Klebe D, Poblete R, et al. Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network. Curr Med Chem. 2015;22:1214–1238.
  • Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 2015;450:282–297.
  • Gazzolo D, Pluchinotta F, Bashir M, et al. Neurological abnormalities in full-term asphyxiated newborns and salivary S100B testing: the “Cooperative multitask against brain injury of neonates” (CoMBINe) international study. PLoS One. 2015;10:e0115194.
  • Riljak V, Kraf J, Daryanani A, et al. Pathophysiology of perinatal hypoxic-ischemic encephalopathy - biomarkers, animal models and treatment perspectives. Physiol Res. 2016;65:S533–S45.
  • Alshweki A, Perez-Munuzuri A, Lopez-Suarez O, et al. Relevance of urinary S100B protein levels as a short-term prognostic biomarker in asphyxiated infants treated with hypothermia. Medicine (Baltimore). 2017;96(44):e8453.
  • Gazzolo D, Marinoni E, Di Iorio R, et al. Measurement of urinary S100B protein concentrations for the early identification of brain damage in asphyxiated full-term infants. Arch Pediatr Adolesc Med. 2003;157:1163–1168.
  • Chaparro-Huerta V, Flores-Soto ME, Merin Sigala ME, et al. Proinflammatory cytokines, enolase and s-100 as early biochemical indicators of hypoxic-ischemic encephalopathy following perinatal asphyxia in newborns. Pediatr Neonatol. 2017;58:70–76.
  • Satriano A, Pluchinotta F, Gazzolo F, et al. The potentials and limitations of neuro-biomarkers as predictors of outcome in neonates with birth asphyxia. Early Hum Dev. 2017;105:63–67.
  • Graham EM, Burd I, Everett AD, et al. blood biomarkers for evaluation of perinatal encephalopathy. Front Pharmacol. 2016;7:196.
  • Nair J, Kumar VHS. Current and emerging therapies in the management of hypoxic ischemic encephalopathy in neonates. Children (Basel). 2018;5(7):99.
  • Alkholy UM, Abdalmonem N, Zaki A, et al. Early predictors of brain damage in full-term newborns with hypoxic ischemic encephalopathy. Neuropsychiatr Dis Treat. 2017;13:2133–2139.
  • Beken S, Aydin B, Dilli D, et al. Can biochemical markers predict the severity of hypoxic-ischemic encephalopathy? Turk J Pediatr. 2014;56:62–68.
  • Chalak LF, Sanchez PJ, Adams-Huet B, et al. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr. 2014;164:468–74 e1.
  • Kim HJ, Tsao JW, Stanfill AG. The current state of biomarkers of mild traumatic brain injury. JCI Insight. 2018;3(1):e97105.
  • Risso FM, Sannia A, Gavilanes DA, et al. Biomarkers of brain damage in preterm infants. J Matern Fetal Neonatal Med. 2012;25(Suppl 4):101–104.
  • Florio P, Luisi S, Moataza B, et al. High urinary concentrations of activin A in asphyxiated full-term newborns with moderate or severe hypoxic ischemic encephalopathy. Clin Chem. 2007;53:520–522.
  • Toorell H, Zetterberg H, Blennow K, et al. Increase of neuronal injury markers Tau and neurofilament light proteins in umbilical blood after intrapartum asphyxia. J Matern Fetal Neonatal Med. 2018;31:2468–2472.
  • Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–198.
  • Blennow M, Sävman K, Ilves P, et al. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr. 2001;90:1171–1175.
  • Shah DK, Ponnusamy V, Evanson J, et al. Raised plasma neurofilament light protein levels are associated with abnormal mri outcomes in newborns undergoing therapeutic hypothermia. Front Neurol. 2018;9:86.
  • Andrikopoulou M, Almalki A, Farzin A, et al. Perinatal biomarkers in prematurity: early identification of neurologic injury. Int J Dev Neurosci. 2014;36:25–31.
  • Di Iorio R, Marinoni E, Lituania M, et al. Adrenomedullin increases in term asphyxiated newborns developing intraventricular hemorrhage. Clin Biochem. 2004;37:1112–1116.
  • Hasslacher J, Lehner GF, Harler U, et al. Secretoneurin as a marker for hypoxic brain injury after cardiopulmonary resuscitation. Intensive Care Med. 2014;40:1518–1527.
  • Wechselberger K, Schmid A, Posod A, et al. Secretoneurin serum levels in healthy term neonates and neonates with hypoxic-ischaemic encephalopathy. Neonatology. 2016;110:14–20.
  • Sweetman DU, Onwuneme C, Watson WR, et al. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy. Acta Paediatr. 2016;105:e513–e9.
  • Wu TW, Tamrazi B, Hsu KH, et al. Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front Neurol. 2018;9:293.
  • Yum SK, Moon CJ, Youn YA, et al. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic-ischemic encephalopathy. J Matern Fetal Neonatal Med. 2017;30:1177–1181.
  • Mehta SL, Kumari S, Mendelev N, et al. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012;13:79.
  • El-Mazary AA, Abdel-Aziz RA, Mahmoud RA, et al. Correlations between maternal and neonatal serum selenium levels in full term neonates with hypoxic ischemic encephalopathy. Ital J Pediatr. 2015;41:83.
  • El-Farghali OG, El-Chimi MS, El-Abd HS, et al. Amino acid and acylcarnitine profiles in perinatal asphyxia: a case-control study. J Matern Fetal Neonatal Med. 2018;31:1462–1469.
  • Lopez-Suarez O, Concheiro-Guisan A, Sanchez-Pintos P, et al. Acylcarnitine profile in neonatal hypoxic-ischemic encephalopathy: the value of butyrylcarnitine as a prognostic marker. Medicine (Baltimore). 2019;98(15):e15221.
  • Cui H, Yang L. Analysis of microRNA expression detected by microarray of the cerebral cortex after hypoxic-ischemic brain injury. J Craniofac Surg. 2013;24:2147–2152.
  • O’Sullivan MP, Looney AM, Moloney GM, et al. Validation of altered umbilical cord blood microrna expression in neonatal hypoxic-ischemic encephalopathy. JAMA Neurol. 2018;76(3):333–341.
  • Ponnusamy V, Kapellou O, Yip E, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatr Res. 2016;79:799–805.
  • Riuzzi F, Sorci G, Sagheddu R, et al. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle. 2018;9(7):1213–1234.
  • Speeckaert R, Voet S, Hoste E, et al. S100B is a potential disease activity marker in nonsegmental vitiligo. J Invest Dermatol. 2017;137(7):1445–1453.
  • Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–668.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.