358
Views
8
CrossRef citations to date
0
Altmetric
Review

Proteomic exploration of cystathionine β-synthase deficiency: implications for the clinic

Pages 751-765 | Received 13 Nov 2020, Accepted 14 Dec 2020, Published online: 28 Jan 2021

References

  • Bada JL. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem Soc Rev. 2013;42(5):2186–2196.
  • Parker ET, Cleaves HJ, Callahan MP, et al. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment. Orig Life Evol Biosph. 2011;41(3):201–212.
  • Jakubowski H. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis dagger. Life. 2017;7(1):6.
  • Vallee Y, Shalayel I, Ly KD, et al. At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. Int J Dev Biol. 2017;61(8–9):471–478.
  • Jakubowski H. Homocysteine in Protein Structure/Function and Human Disease - Chemical Biology of Homocysteine-containing Proteins. Wien: Springer; 2013.
  • Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease [Review]. Physiol Rev. 2019;99(1):555–604.
  • Jakubowski H. Quality control in tRNA charging. Wiley Interdiscip Rev RNA. 2012;3(3):295–310.
  • Jakubowski H. Quality control in tRNA charging – editing of homocysteine. Acta Biochim Pol. 2011;58(2):149–163.
  • Borowczyk K, Piechocka J, Glowacki R, et al. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial. J Intern Med. 2019;285(2):232–244.
  • Suszynska-Zajczyk J, Luczak M, Marczak L, et al. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration. J Alzheimers Dis. 2014;40(3):713–726. .
  • Bossenmeyer-Pourie C, Smith AD, Lehmann S, et al. N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J Pathol. 2019. DOI:10.1002/path.5254.
  • Perla-Kajan J, Utyro O, Rusek M, et al. N-Homocysteinylation impairs collagen cross-linking in cystathionine beta-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. Faseb J. 2016;30(11):3810–3821.
  • Borowczyk K, Wroblewski J, Suliburska J, et al. Mutations in Homocysteine Metabolism Genes Increase Keratin N-Homocysteinylation and Damage in Mice. Int J Genomics. 2018;2018:7570850.
  • Zhang Q, Bai B, Mei X, et al. Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun. 2018;9(1):3436.
  • Mei X, Qi D, Zhang T, et al. Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol Med. 2020;12(3):e9469. .
  • Colasanti T, Sabatinelli D, Mancone C, et al. Homocysteinylated alpha 1 antitrypsin as an antigenic target of autoantibodies in seronegative rheumatoid arthritis patients. J Autoimmun. 2020;113:102470.
  • Jakubowski H. Protein N-Homocysteinylation and Colorectal Cancer. Trends Cancer. 2019;5(1):7–10.
  • Wang D, Zhao R, Qu YY, et al. Colonic Lysine Homocysteinylation Induced by High-Fat Diet Suppresses DNA Damage Repair. Cell Rep. 2018;25(2):398–412 e6.
  • Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–1942.
  • Mudd SH, Levy HL, Kraus JP, et al. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, editors. The metabolic and molecular bases of inherited disease. Vol. 2. 8th ed. New York: Mc Graw-Hill; 2001; p. 2007–2056.
  • Rosenblatt D, Fenton W. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, et al., editors. The metabolic and molecular bases of inherited disease. 8th ed. New York:Mc Graw-Hill; 2001. p.2007–2056.
  • Teng YW, Mehedint MG, Garrow TA, et al. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas [Research Support, N.I.H., Extramural]. J Biol Chem. 2011;286(42):36258–36267. .
  • Jakubowski H, Zhang L, Bardeguez A, et al. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.
  • Chwatko G, Jakubowski H. Urinary excretion of homocysteine-thiolactone in humans. Clin Chem. 2005;51(2):408–415.
  • Borowczyk K, Tisonczyk J, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids. 2012;43(3):1339–1348.
  • Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis. 2012;30(2):225–231.
  • Christensen B, Refsum H, Vintermyr O, et al. Homocysteine export from cells cultured in the presence of physiological or superfluous levels of methionine: methionine loading of non-transformed, transformed, proliferating, and quiescent cells in culture. J Cell Physiol. 1991;146(1):52–62.
  • Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. Faseb J. 1999;13(15):2277–2283.
  • Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation [Research Support, U.S. Gov’t, Non-P.H.S.]. J Biol Chem. 2000;275(6):3957–3962.
  • Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–30428.
  • Sengupta S, Chen H, Togawa T, et al. Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem. 2001;276(32):30111–30117.
  • Jakubowski H. Transfer RNA Synthetase Editing of Errors in Amino Acid Selection. eLS. Chichester: John Wiley & Sons, Ltd; 2015. p. 1–18.
  • Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004;61(4):470–487.
  • Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6Suppl):1741S–1749S.
  • Finkelstein JD. Homocysteine: a history in progress. Nutr Rev. 2000;58(7):193–204.
  • Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med. 2015;78:123–134.
  • Bruintjes JJ, Henning RH, Douwenga W, et al. Hippocampal cystathionine beta synthase in young and aged mice. Neurosci Lett. 2014;563:135–139.
  • Zimny J, Sikora M, Guranowski A, et al. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem. 2006;281(32):22485–22492. .
  • Perla-Kajan J, Borowczyk K, Glowacki R, et al. Paraoxonase 1 Q192R genotype and activity affect homocysteine thiolactone levels in humans. Faseb J. 2018;fj201800346R. doi:10.1096/fj.201800346R
  • Zimny J, Bretes E, Guranowski A. Novel mammalian homocysteine thiolactone hydrolase: purification and characterization. Acta Biochim Pol. 2010;57 Suppl 4(Suppl4):134.
  • Zimny J, Bretes E, Grygiel D, et al. Human mitochondrial homocysteine thiolactone hydrolase; overexpression and purification. Acta Biochim Pol. 2011;58 Suppl 4(Suppl4):57.
  • Marsillach J, Suzuki SM, Richter RJ, et al. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PloS One. 2014;9(10):e110054.
  • Mudd SH, Finkelstein JD, Refsum H, et al. Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol. 2000;20(7):1704–1706. .
  • Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37(1):1–31.
  • Borowczyk K, Chwatko G, Kubalczyk P, et al. Simultaneous Determination of Methionine and Homocysteine by on-column derivatization with o-phtaldialdehyde. Talanta. 2016;161:917–924.
  • Jakubowski H, Boers GH, Strauss KA. Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. Faseb J. 2008;22(12):4071–4076.
  • Chwatko G, Boers GH, Strauss KA, et al. Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. Faseb J. 2007;21(8):1707–1713.
  • El-Said MF, Badii R, Bessisso MS, et al. A common mutation in the CBS gene explains a high incidence of homocystinuria in the Qatari population. Hum Mutat. 2006;27(7):719. .
  • Refsum H, Fredriksen A, Meyer K, et al. Birth prevalence of homocystinuria. J Pediatr. 2004;144(6):830–832.
  • Gaustadnes M, Ingerslev J, Rutiger N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med. 1999;340(19):1513.
  • Lu YH, Huang YH, Cheng LM, et al. Homocystinuria in Taiwan: an inordinately high prevalence in an Austronesian aboriginal tribe, Tao. Mol Genet Metab. 2012;105(4):590–595. .
  • Majtan T, Pey AL, Gimenez-Mascarell P, et al. Potential Pharmacological Chaperones for Cystathionine Beta-Synthase-Deficient Homocystinuria. Handb Exp Pharmacol. 2018;245:345–383.
  • Bublil EM, Majtan T. Classical homocystinuria: from cystathionine beta-synthase deficiency to novel enzyme therapies. Biochimie. 2020;173:48–56.
  • Lee HO, Gallego-Villar L, Grisch-Chan HM, et al. Treatment of Cystathionine beta-Synthase Deficiency in Mice Using a Minicircle-Based Naked DNA Vector. Hum Gene Ther. 2019;30(9):1093–1100.
  • Latour A, Salameh S, Carbonne C, et al. Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia. Mol Genet Metab Rep. 2015;2:51–60.
  • Carson NA, Dent CE, Field CM, et al. Homocystinuria: clinical and Pathological Review of Ten Cases. J Pediatr. 1965;66:565–583.
  • Jakubowski H. Quantification of urinary S- and N-homocysteinylated protein and homocysteine-thiolactone in mice. Anal Biochem. 2016;508:118–123.
  • Jakubowski H, Perla-Kajan J, Finnell RH, et al. Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. Faseb J. 2009;23(6):1721–1727.
  • Paoli P, Sbrana F, Tiribilli B, et al. Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J Mol Biol. 2010;400(4):889–907.
  • Capasso R, Sambri I, Cimmino A, et al. Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PloS One. 2012;7(2):e31388.
  • Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem. 2004;279(12):10864–10871.
  • Sikora M, Marczak L, Twardowski T, et al. Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem. 2010;405(1):132–134.
  • Marczak L, Sikora M, Stobiecki M, et al. Analysis of site-specific N-homocysteinylation of human serum albumin in vitro and in vivo using MALDI-ToF and LC-MS/MS mass spectrometry. J Proteomics. 2011;74(7):967–974. .
  • Sikora M, Marczak L, Perla-Kajan J, et al. Sex affects N-homocysteinylation at lysine residue 212 of albumin in mice. Sci Rep. 2019;9(1):2669.
  • Sikora M, Marczak L, Kubalska J, et al. Identification of N-homocysteinylation sites in plasma proteins. Amino Acids. 2014;46(1):235–244..
  • Undas A, Perla J, Lacinski M, et al. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke. 2004;35(6):1299–1304.
  • Sauls DL, Lockhart E, Warren ME, et al. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry. 2006;45(8):2480–2487.
  • Gurda D, Handschuh L, Kotkowiak W, et al. Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids. 2015;47(7):1319–1339.
  • Kelly PJ, Furie KL, Kistler JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase deficiency. Neurology. 2003;60(2):275–279. .
  • Sikora M, Lewandowska I, Kupc M, et al. Serum Proteome Alterations in Human Cystathionine beta-Synthase Deficiency and Ischemic Stroke Subtypes. Int J Mol Sci. 2019;20(12):3096.
  • Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000;130(2SSuppl):377S–381S.
  • La Corte AL, Ali M, Glowacki R, et al. In vivo N-homocysteinylation of fibrinogen and its role in thrombosis. J Thromb Haemost. 2011;9(SI,suppl. 2):142.
  • Genoud V, Lauricella AM, Kordich LC, et al. Impact of homocysteine-thiolactone on plasma fibrin networks. J Thromb Thrombolysis. 2014;38(4):540–545.
  • Blomback B. Fibrinogen and fibrin–proteins with complex roles in hemostasis and thrombosis. Thromb Res. 1996;83(1):1–
  • Nakashima F, Shibata T, Kamiya K, et al. Structural and functional insights into S-thiolation of human serum albumins. Sci Rep. 2018;8(1):932.
  • Schienle HW, Seitz R, Rohner I, et al. Coagulation factors and markers of activation of coagulation in homocystinuria (HOCY): a study in two siblings. Blood Coagul Fibrinolysis. 1994;5(6):873–878.
  • Kruger WD. Cystathionine beta-synthase deficiency: of mice and men. Mol Genet Metab. 2017;121(3):199–205.
  • Watanabe M, Osada J, Aratani Y, et al. Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A. 1995;92(5):1585–1589.
  • Hamelet J, Demuth K, Paul JL, et al. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol. 2007;46(1):151–159.
  • Gupta S, Kuhnisch J, Mustafa A, et al. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. Faseb J. 2009;23(3):883–893.
  • Stabler SP, Korson M, Jethva R, et al. Metabolic profiling of total homocysteine and related compounds in hyperhomocysteinemia: utility and limitations in diagnosing the cause of puzzling thrombophilia in a family. JIMD Rep. 2013;11:149–163.
  • Sarov M, Not A, de Baulny HO, et al. A case of homocystinuria due to CBS gene mutations revealed by cerebral venous thrombosis. J Neurol Sci. 2014;336(1–2):257–259.
  • Dayal S, Chauhan AK, Jensen M, et al. Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood. 2012;119(13):3176–3183.
  • Jacovina AT, Deora AB, Ling Q, et al. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J Clin Invest. 2009;119(11):3384–3394.
  • Park I, Johnson LK, Cox A, et al. Hypermethioninemia Leads to Fatal Bleeding and Increased Mortality in a Transgenic I278T Mouse Model of Homocystinuria. Biomedicines. 2020;8:8.
  • Sikora M, Lewandowska I, Marczak L, et al. Cystathionine beta-synthase deficiency: different changes in proteomes of thrombosis-resistant Cbs(-/-) mice and thrombosis-prone CBS(-/-) humans. Sci Rep. 2020;10(1):10726.
  • Unsworth AJ, Flora GD, Sasikumar P, et al. RXR Ligands Negatively Regulate Thrombosis and Hemostasis. Arterioscler Thromb Vasc Biol. 2017;37(5):812–822.
  • Oikonomopoulou K, Ricklin D, Ward PA, et al. Interactions between coagulation and complement–their role in inflammation. Semin Immunopathol. 2012;34(1):151–165.
  • Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. Faseb J. 2017;31(2):598–609.
  • Reddy K, Cusack CL, Nnah IC, et al. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell Rep. 2016;14(9):2166–2179.
  • Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed). 2012;4:941–952.
  • Robert K, Maurin N, Vayssettes C, et al. Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol. 2005;282(1):1–7. .
  • Gelse K, Poschl E, Aigner T. Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–1546.
  • Eyre DR, Weis MA, Wu JJ. Advances in collagen cross-link analysis. Methods. 2008;45(1):65–74.
  • Hornstra IK, Birge S, Starcher B, et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem. 2003;278(16):14387–14393.
  • Maki JM, Rasanen J, Tikkanen H, et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 2002;106(19):2503–2509.
  • Fujimoto D, Moriguchi T, Ishida T, et al. The structure of pyridinoline, a collagen crosslink. Biochem Biophys Res Commun. 1978;84(1):52–57.
  • McKusick VA. Heritable Disorders of Connective Tissue. Mosby, C.V.: St Louis; 1966. p. 155.
  • Kang AH, Trelstad RL. A collagen defect in homocystinuria. J Clin Invest. 1973;52(10):2571–2578.
  • Lubec B, Fang-Kircher S, Lubec T, et al. Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta. 1996;1315(3):159–162.
  • Wriston JC Jr., Mackenzie CG. Synthesis and metabolism of 1, 3-thiazane-4-carboxylic acid derived from formaldehyde and homocysteine. J Biol Chem. 1957;225(2):607–613.
  • Neely WB. Action of Formaldehyde on Microorganisms. Ii. Formation of 1,3-Thiazane-4-Carboxylic Acid in Aerobacter Aerogenes Treated with Formaldehyde. J Bacteriol. 1963;85:1420–1422.
  • Jakubowski H. Mechanism of the condensation of homocysteine thiolactone with aldehydes. Chemistry. 2006;12(31):8039–8043.
  • Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem. 1997;272(51):32370–32377.
  • Carey MC, Donovan DE, FitzGerald O, et al. Homocystinuria. I. A clinical and pathological study of nine subjects in six families. Am J Med. 1968;45(1):7–25.
  • Robert K, Maurin N, Ledru A, et al. Hyperkeratosis in cystathionine beta synthase-deficient mice: an animal model of hyperhomocysteinemia. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):1072–1076. .
  • Akahoshi N, Kobayashi C, Ishizaki Y, et al. Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum Mol Genet. 2008;17(13):1994–2005.
  • Borowczyk K, Suliburska J, Jakubowski H. Demethylation of methionine and keratin damage in human hair. Amino Acids. 2018;50(5):537–546.
  • Sulfur Radical-Induced SC. Redox Modifications in Proteins: analysis and Mechanistic Aspects. Antioxid Redox Signal. 2017;26(8):388–405.
  • Sibrian-Vazquez M, Escobedo JO, Lim S, et al. Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci U S A. 2010;107(2):551–554.
  • Perla-Kajan J, Marczak L, Kajan L, et al. Modification by homocysteine thiolactone affects redox status of cytochrome C. Biochemistry. 2007;46(21):6225–6231. .
  • Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 1998;157(Suppl 2):S40–4.
  • Stead LM, Brosnan ME, Brosnan JT. Characterization of homocysteine metabolism in the rat liver. Biochem J. 2000;350 Pt 3:685–692.
  • Halsted CH, Villanueva J, Chandler CJ, et al. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology. 1996;23(3):497–505.
  • Hultberg B, Berglund M, Andersson A, et al. Elevated plasma homocysteine in alcoholics. Alcohol Clin Exp Res. 1993;17(3):687–689.
  • Gaull G, Sturman JA, Schaffner F. Homocystinuria due to cystathionine synthase deficiency: enzymatic and ultrastructural studies. J Pediatr. 1974;84(3):381–390.
  • Namekata K, Enokido Y, Ishii I, et al. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem. 2004;279(51):52961–52969.
  • Hamelet J, Maurin N, Fulchiron R, et al. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Exp Mol Pathol. 2007;83(2):249–253.
  • Guillen N, Navarro MA, Arnal C, et al. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver. Physiol Genomics. 2009;37(3):187–198.
  • Utyro O, Perla-Kajan J, Jakubowski H. The Cbs Locus Affects the Expression of Senescence Markers and mtDNA Copy Number, but not Telomere Dynamics in Mice. Int J Mol Sci. 2020;21:7.
  • Morris AA, Kozich V, Santra S, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J InheritMetab Dis. 2017;40(1):49–74.
  • Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr. 2010;156(3):427–432.
  • Keller R, Chrastina P, Pavlikova M, et al. Newborn screening for homocystinurias: recent recommendations versus current practice. J Inherit Metab Dis. 2019;42(1):128–139.
  • Ruhoy IS, Merritt JL 2nd, Amlie-Lefond C. Cystathionine beta-synthase deficiency heralded by cerebral sinus venous thrombosis and stroke. Pediatr Neurol. 2014;50(1):108–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.