509
Views
7
CrossRef citations to date
0
Altmetric
Meta-Analysis

Targeted urine proteomics in lupus nephritis – a meta-analysis

, , &
Pages 767-776 | Received 02 Nov 2020, Accepted 06 Jan 2021, Published online: 19 Jan 2021

References

  • Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc Nephrol. 2017;12(5):825–835.
  • Giannico G, Fogo AB. Lupus nephritis: is the kidney biopsy currently necessary in the management of lupus nephritis? Clin J Am Soc Nephrol. 2013;8(1):138–145.
  • Zhang T, Li H, Vanarsa K, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages. Front Immunol. 2020;11:671.
  • Parodis I, Gokaraju S, Zickert A, et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology (Oxford). 2020;59(9):2237–2249.
  • Soliman S, Mohan C. Lupus nephritis biomarkers. Clin Immunol. 2017;185:10–20. .
  • Mok CC, Soliman S, Ho LY, et al. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res Ther. 2018;20(1):6.
  • Qin L, Stanley S, Ding H, et al. Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis. Arthritis Res Ther. 2019;21(1):176.
  • Nicolaou O, Kousios A, Hadjisavvas A, et al. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review. J Cell Mol Med. 2017;21(5):993–1012.
  • Hoyer KJR, Dittrich S, Bartram MP, et al. Quantification of molecular heterogeneity in kidney tissue by targeted proteomics. J Proteomics. 2019;193:85–92.
  • Konvalinka A, Scholey JW, Diamandis EP. Searching for new biomarkers of renal diseases through proteomics. Clin Chem. 2012;58(2):353–365.
  • Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14(1):35–48.
  • Rovin BH, Klein JB. Proteomics and autoimmune kidney disease. Clin Immunol. 2015;161(1):23–30.
  • Korte EA, Gaffney P, Powell DW, et al. Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus. Arthritis Res Ther. 2012;14(1):204.
  • Caster DJ, Hobeika L, Klein JB, et al. Changing the concepts of immune-mediated glomerular diseases through proteomics. Proteomics Clin Appl. 2015;9(11–12):967–971.
  • L’Imperio V, Smith A, Chinello C, et al. Proteomics and glomerulonephritis: a complementary approach in renal pathology for the identification of chronic kidney disease related markers. Proteomics Clin Appl. 2016;10(4):371–383.
  • Kalantari S, Jafari A, Moradpoor R, et al. Human urine proteomics: analytical techniques and clinical applications in renal diseases. Int J Proteomics. 2015;2015:782798.
  • Paul P, Antonydhason V, Gopal J, et al. Bioinformatics for renal and urinary proteomics: call for aggrandization. Int J Mol Sci. 2020;21(3):3.
  • Thomas S, Hao L, Ricke WA, et al. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl. 2016;10(4):358–370.
  • Jiang S, Wang Y, Liu Z. The application of urinary proteomics for the detection of biomarkers of kidney diseases. Adv Exp Med Biol. 2015;845:151–165.
  • Vanarsa K, Mohan C. Proteomics in rheumatology: the dawn of a new era. F1000 Med Rep. 2010;2:87.
  • Kim MJ, Frankel AH, Tam FW. Urine proteomics and biomarkers in renal disease. Nephron Exp Nephrol. 2011;119(1):e1–7.
  • Aggarwal A, Gupta R, Negi VS, et al. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis. Clin Exp Immunol. 2017;188(2):254–262.
  • Zhang X, Jin M, Wu H, et al. Biomarkers of lupus nephritis determined by serial urine proteomics. Kidney Int. 2008;74(6):799–807.
  • Stanley S, Mok CC, Vanarsa K, et al. Identification of low-abundance urinary biomarkers in lupus nephritis using electrochemiluminescence immunoassays. Arthritis Rheumatol. 2019;71(5):744–755.
  • Stanley S, Vanarsa K, Soliman S, et al. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat Commun. 2020;11(1): 2197.
  • Vanarsa K, Soomro S, Zhang T, et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann Rheum Dis. 2020;79(10): 1349–1361.
  • Wu J, Chen YD, Gu W. Urinary proteomics as a novel tool for biomarker discovery in kidney diseases. J Zhejiang Univ Sci B. 2010;11(4):227–237.
  • Jakiela B, Kosałka J, Plutecka H, et al. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus. 2018;27(8):1259–1270.
  • Fava A, Buyon J, Mohan C, et al., Integrated urine proteomics and renal single-cell genomics identify an IFN-gamma response gradient in lupus nephritis. JCI Insight. 2020;5(12): 12.
  • Der E, Suryawanshi H, Morozov P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol. 2019;20(7): 915–927.
  • Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902 e21.
  • Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–420.
  • Perez de Lema G, Maier H, Nieto E, et al. Chemokine expression precedes inflammatory cell infiltration and chemokine receptor and cytokine expression during the initiation of murine lupus nephritis. J Am Soc Nephrol. 2001;12(7):1369–1382.
  • Kulkarni OAH. Chemokines in lupus nephritis. Front Biosci. 2008;13:3312–3320.
  • BH. R. The chemokine network in systemic lupus erythematous nephritis. Front Biosci. 2008;13(13):904–922.
  • Vielhauer V, Anders HJ, Schlöndorff D, et al. Chemokines and chemokine receptors as therapeutic targets in lupus nephritis. Semin Nephrol. 2007;27(1):81–97.
  • Liao X, Pirapakaran T, Luo XM. Chemokines and chemokine receptors in the development of lupus nephritis. Mediators Inflammation. 2016;2016:6012715.
  • Puapatanakul P, Chansritrakul S, Susantitaphong P, et al. Interferon-inducible protein 10 and disease activity in systemic lupus erythematosus and lupus nephritis: a systematic review and meta-analysis. Int J Mol Sci. 2019;20(19):19.
  • Wu T, Xie C, Wang HW, et al. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J Immunol. 2007;179(10):7166–7175.
  • Sun MY, Wang SJ, Li XQ, et al. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway. Front Pharmacol. 2019;10:224.
  • Hoste E, Bihorac A, Al-Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. 2020;46(5):943–953.
  • Vyshkina T, Sylvester A, Sadiq S, et al. CCL genes in multiple sclerosis and systemic lupus erythematosus. J Neuroimmunol. 2008;200(1–2):145–152.
  • Cappello P, Caorsi C, Bosticardo M, et al. CCL16/LEC powerfully triggers effector and antigen-presenting functions of macrophages and enhances T cell cytotoxicity. J Leukoc Biol. 2004;75(1):135–142.
  • Strasly M, Doronzo G, Cappello P, et al. CCL16 activates an angiogenic program in vascular endothelial cells. Blood. 2004;103(1):40–49.
  • Inaba A, Tuong ZK, Riding AM, et al. B lymphocyte-derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury. J Immunol. 2020;205(5):1376–1384.
  • Gonzalez J, Mouttalib S, Delage C, et al. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun. 2013;438(2):257–263.
  • Chakravorty SJ, Howie AJ, Girdlestone J, et al. Potential role for monocyte chemotactic protein-4 (MCP-4) in monocyte/macrophage recruitment in acute renal inflammation. J Pathol. 2001;194(2):239–246.
  • Montero RM, Bhangal G, Pusey CD, et al. CCL18 synergises with high concentrations of glucose in stimulating fibronectin production in human renal tubuloepithelial cells. BMC Nephrol. 2016;17(1):139.
  • Brix SR, Stege G, Disteldorf E, et al. CC chemokine ligand 18 in ANCA-associated crescentic GN. J Am Soc Nephrol. 2015;26(9):2105–2117.
  • Mohan T, Deng L, Wang BZ. CCL28 chemokine: an anchoring point bridging innate and adaptive immunity. Int Immunopharmacol. 2017;51:165–170.
  • Noels H, Bernhagen J, Weber C, et al. Macrophage migration inhibitory factor: a noncanonical chemokine important in atherosclerosis. Trends Cardiovasc Med. 2009;19(3):76–86.
  • Lan HY, Yang N, Nikolic-Paterson DJ, et al. Expression of macrophage migration inhibitory factor in human glomerulonephritis. Kidney Int. 2000;57(2):499–509.
  • Vincent FB, Slavin L, Hoi AY, et al. Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000277.
  • Tu Y, Guo R, Li J, et al. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654. Front Immunol. 2019;10:2229.
  • Otukesh H, Chalian M, Hoseini R, et al. Urine macrophage migration inhibitory factor in pediatric systemic lupus erythematosus. Clin Rheumatol. 2007;26(12):2105–2107.
  • Li JH, Tang Y, Lv J, et al. Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. J Cell Mol Med. 2019;23(6):3867–3877.
  • Wang J, Li Y, Chen Y, et al. Urinary macrophage migration inhibitory factor as a noninvasive biomarker in pediatric Henoch-Schonlein purpura nephritis. J Clin Rheumatol. 2017;23(5):258–261.
  • Matsumoto K, Kanmatsuse K. Urinary levels of macrophage migration inhibitory factor in patients with IgA nephropathy. Nephron. 2002;92(2):309–315.
  • Brown FG, Nikolic-Paterson DJ, Hill PA, et al. Urine macrophage migration inhibitory factor reflects the severity of renal injury in human glomerulonephritis. J Am Soc Nephrol. 2002;13(Suppl 1):S7–13.
  • Sakly N, Mirshahi P, Ducros E, et al. Angiogenic activity in sera of patients with systemic lupus erythematosus. Lupus. 2009;18(8):705–712.
  • Wu T, Du Y, Han J, et al. Urinary angiostatin–a novel putative marker of renal pathology chronicity in lupus nephritis. Mol Cell Proteomics. 2013;12(5):1170–1179.
  • Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep. 2018;38(5):5.
  • Y Oy I, Yasunaga K, Hamada K, et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res. 2003;63(20):6651–6657.
  • A T-M, Patel JV, Lip GY. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost. 2006;4(9):1864–1874.
  • Kuwahara A, Jinnin M, Makino T, et al. Angiogenin expression in the sera and skin of patients with rheumatic diseases. Biosci Trends. 2012;6(5):229–233.
  • MS J, Weakley S, Yao Q, et al. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–632.
  • Park HK, Kwak MK, Kim HJ, et al. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med. 2017;32(2):239–247.
  • Acquarone E, Monacelli F, Borghi R, et al. Resistin: a reappraisal. Mech Ageing Dev. 2019;178:46–63.
  • Malyszko J, Malyszko JS, Pawlak K, et al. Resistin, a new adipokine, is related to inflammation and renal function in kidney allograft recipients. Transplant Proc. 2006;38(10):3434–3436.
  • Bonito B, Silva AP, Rato F, et al. Resistin as a predictor of cardiovascular hospital admissions and renal deterioration in diabetic patients with chronic kidney disease. J Diabetes Complications. 2019;33(11):107422.
  • Tsai HC, Cheng S, Han CK, et al. Resistin enhances angiogenesis in osteosarcoma via the MAPK signaling pathway. Aging (Albany NY). 2019;11(21):9767–9777.
  • TP Z, Li H, Li R, et al. Association of omentin-1, adiponectin, and resistin genetic polymorphisms with systemic lupus erythematosus in a Chinese population. Int Immunopharmacol. 2020;83:106343.
  • Hutcheson J, Ye Y, Han J, et al. Resistin as a potential marker of renal disease in lupus nephritis. Clin Exp Immunol. 2015;179(3):435–443.
  • Wang XD, Huang XF, Yan QR, et al. Aberrant activation of the WNT/beta-catenin signaling pathway in lupus nephritis. PLoS One. 2014;9(1):e84852.
  • Xue J, Yang J, Yang L, et al. Dickkopf-1 is a biomarker for systemic lupus erythematosus and active lupus nephritis. J Immunol Res. 2017;2017:6861575.
  • Rupanagudi KV, Kulkarni OP, Lichtnekert J, et al. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann Rheum Dis. 2015;74(2):452–463.
  • Yao X, Cheng F, Yu W, et al. Cathepsin S regulates renal fibrosis in mouse models of mild and severe hydronephrosis. Mol Med Rep. 2019;20(1):141–150.
  • Thanei S, Theron M, Silva AP, et al. Cathepsin S inhibition suppresses autoimmune-triggered inflammatory responses in macrophages. Biochem Pharmacol. 2017;146:151–164.
  • Zhang TP, Li HM, Leng RX, et al. Plasma levels of adipokines in systemic lupus erythematosus patients. Cytokine. 2016;86:15–20.
  • Wang M, Sampson ER, Jin H, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther. 2013;15(1):R5.
  • Cabrera S, Maciel M, Hernandez-Barrientos D, et al. Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am J Physiol Lung Cell Mol Physiol. 2019;316(5):L961–L76.
  • QQ Z, Li T, Chen R, et al. Elevated serum levels of MMP-2, MMP-3, and MMP-13 in Chinese patients with systemic lupus erythematosus. Scand J Rheumatol. 2010;39(5):439–441.
  • Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800(8):760–769.
  • McCullough KBS, Bolisetty S. Ferritins in kidney disease. Semin Nephrol. 2020;40(2):160–172.
  • R T, Panda A, Das BK. Serum ferritin level correlates with SLEDAI scores and renal involvement in SLE. Lupus. 2015;24(1):82–89.
  • Wu T, Ding H, Han J, et al. Antibody-array-based proteomic screening of serum markers in systemic lupus erythematosus: a discovery study. J Proteome Res. 2016;15(7):2102–2114.
  • Qi L, Xu J, Yang C, et al. Urinary ferritin creatinine ratio, a potential biomarker for lupus nephritis activity. Clin Rheumatol. 2020;40(1):143–149.
  • Lorz C, Ortiz A, Justo P, et al. Proapoptotic Fas ligand is expressed by normal kidney tubular epithelium and injured glomeruli. J Am Soc Nephrol. 2000;11(7):1266–1277.
  • Vincent FB, Kandane-Rathnayake R, Koelmeyer R, et al. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus. Lupus Sci Med. 2020;7(1):1.
  • I B-A, Daza L, Avalos-Díaz E, et al. Glomerular expression of Fas ligand and Bax mRNA in lupus nephritis. Autoimmunity. 2001;34(4):283–289.
  • Jh Qq C, Guo Y, Zhang YQ, et al. Increased apoptosis and expression of FasL, Bax and caspase-3 in human lupus nephritis class II and IV. J Nephrol. 2012;25(2):255–261.
  • Tsukinoki T, Sugiyama H, Sunami R, et al. Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-kappaB-mediated expression in cultured human mesangial cells. Clin Exp Nephrol. 2004;8(3):196–205.
  • Zhang D, Gava AL, Van Krieken R, et al. The caveolin-1 regulated protein follistatin protects against diabetic kidney disease. Kidney Int. 2019;96(5):1134–1149.
  • D’Ignazio L, Batie M, Rocha S. TNFSF14/LIGHT, a non-canonical NF-kappaB stimulus, induces the hif pathway. Cells. 2018;7(8):8.
  • Yang Y, Meng L, Wu S, et al. LIGHT deficiency aggravates cisplatin-induced acute kidney injury by upregulating mitochondrial apoptosis. Int Immunopharmacol. 2020;89(Pt A):106999.
  • Harley RJ, Murdy JP, Wang Z, et al. Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development. Dev Dyn. 2018;247(7):934–950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.