1,798
Views
2
CrossRef citations to date
0
Altmetric
Editorial

How can proteomics overhaul our understanding of Leishmania biology?

&
Pages 789-792 | Received 30 Nov 2020, Accepted 01 Feb 2021, Published online: 10 Feb 2021

References

  • Aebersold R, Agar JN, Amster IJ, et al. How many human proteoforms are there? Nat Chem Biol. 2018;14(3):206–214.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.
  • Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951–970.
  • Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol. 2012;181(2):61–72.
  • Parthasarathy A, Kalesh K. Defeating the tripanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem. 2020;11:625–645.
  • Kalesh K, Denny PW. A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation. PLoS Negl Trop Dis. 2019;13(12):e0007651.
  • Savitski MM, Zinn N, Faelth-Savitski M, et al., Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell. 2018;173(1):260–274.
  • Tsigankov P, Gherardini PF, Helmer-Citterich M, et al. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res. 2013;12(7):3405–3412.
  • Mule SN, Saad JS, Fernandes LR, et al. Protein glycosylation in Leishmania spp. Mol Omics. 2020;16(5):407–424.
  • Rosenzweig D, Smith D, Myler PJ, et al. Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics. 2008;8(9):1843–1850.
  • Burge RJ, Damianou A, Wilkinson AJ, et al. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog. 2020;16(10):e1008784.
  • Damianou A, Burge RJ, CMC C-P, et al. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog. 2020;16(6):e1008455.
  • Mulvey CM, Breckels LM, Geladaki A, et al., Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat Protoc. 2017;12(6):1110–1135.
  • Barylyuk K, Koreny L, Ke H, et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 2020;28(5):752–766.
  • Menezes JP, Almeida TF, Petersen AL, et al. Proteomic analysis reveals differentially expressed proteins in macrophages infected with Leishmania amazonensis or Leishmania major. Microbes Infect. 2013;15(8–9):579–591.
  • Singh AK, Pandey RK, Siqueira-Neto JL, et al. Proteomic-based approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an early temporal window. Infect Immun. 2015;83(5):1853–1868.
  • Negrao F, Giorgio S, Eberlin MN, et al., Comparative proteomic analysis of murine cutaneous lesions induced by Leishmania amazonensis or Leishmania major. ACS Infect Dis. 2019;5(8):1295–1305. .
  • da Silva Santos C, Attarha S, Saini RK, et al. Proteome profiling of human cutaneous leishmaniasis lesion. J Invest Dermatol. 2015;135(2):400–410.
  • Bag AK, Saha S, Sundar S, et al. Comparative proteomics and glycoproteomics of plasma proteins in Indian visceral leishmaniasis. Proteome Sci. 2014;12(1):48.
  • Marr AK, MacIsaac JL, Jiang R, et al. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog. 2014;10(10):e1004419.
  • Wyllie S, Thomas M, Patterson S, et al. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature. 2018;560(7717):192–197.
  • Wright MH, Paape D, Storck EM, et al. Global analysis of protein N-myristoylation and exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. Chem Biol. 2015;22(3):342–354.
  • Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10(10):1567–1593.
  • Corpas-Lopez V, Moniz S, Thomas M, et al. Pharmacological validation of N-myristoyltransferase as a drug target in Leishmania donovani. ACS Infect Dis. 2019;5(1):111–122.
  • Jones NG, CMC C-P, Lima A, et al. Genetically validated drug targets in Leishmania: current knowledge and future prospects. ACS Infect Dis. 2018;4(4):467–477.
  • Gazanion E, Fernandez-Prada C, Papadopoulou B, et al., Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A. 2016;113(21):E3012–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.