1,544
Views
15
CrossRef citations to date
0
Altmetric
Review

Studies in lung cancer cytokine proteomics: a review

, , , &
Pages 49-64 | Received 22 Nov 2020, Accepted 16 Feb 2021, Published online: 11 Mar 2021

References

  • Sheikhpour M, Ahangari G, Sadeghizadeh M, et al. A novel report of apoptosis in human lung carcinoma cells using selective agonist of D2-like dopamine receptors: a new approach for the treatment of human non-small cell lung cancer. Int J Immunopathol Pharmacol. 2013 Apr-Jun;26(2):393–402.
  • Bronte G, Rizzo S, La Paglia L, et al. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat Rev. 2010 Nov;36(Suppl 3):S21–9.
  • Gazdar AF. Should we continue to use the term non-small-cell lung cancer? Ann Oncol. 2010;21(Suppl7):vii225–vii229.
  • Ellis PM, Vandermeer R. Delays in the diagnosis of lung cancer. J Thorac Dis. 2011;3(3):183–188.
  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–466.
  • Shaikhpoor M, Ahangari G, Sadeghizadeh M, et al. Significant changes in D2-like dopamine gene receptors expression associated with non-small-cell lung cancer: could it be of potential use in the design of future therapeutic strategies? Curr Cancer Ther Rev. 2012;8(4):304–310.
  • Abolfathi H, Sheikhpour M, Mohammad Soltani B, et al. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: a Research paper. Gene Rep. 2021 [2021 03 01];22:100967.
  • Indovina P, Marcelli E, Maranta P, et al. Lung cancer proteomics: recent advances in biomarker discovery. Int J Proteomics. 2011;2011:726869.
  • Hood L, Rowen L. The human genome project: big science transforms biology and medicine. Genome Med. 2013;5(9): 79-79.
  • Graves PR, Haystead TAJ. Molecular Biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66(1):39–63.
  • Shiva A, Arab S. Review article about nutrition and primary prevention of oral cancer. Rev Clinl Med. 2015;2(3):138–143.
  • Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–719.
  • Slattery ML, Curtin K, Poole EM, et al. Genetic variation in C-reactive protein in relation to colon and rectal cancer risk and survival. Int J Cancer. 2011 [2011/06];128(11):2726–2734.
  • Dranoff G. Immune recognition and tumor protection. Curr Opin Immunol. 2002;2(14):161–164.
  • Pardoll DM. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002 Apr;2(4):227–238.
  • Coussens LM, Tinkle CL, Hanahan D, et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000 Oct 27;103(3):481–490.
  • Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37(Suppl1):S34–S45.
  • Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008.
  • Zhang J-M AJ. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2): 27–37. Spring.
  • Enewold L, Mechanic LE, Bowman ED, et al. Serum concentrations of cytokines and lung cancer survival in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 2009;18(1):215–222.
  • Marrugal A, Ojeda L, Paz-Ares L, et al. Proteomic-based approaches for the study of cytokines in lung cancer. Dis Markers. 2016;2016:2138627.
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899.
  • Tafani M, Sansone L, Limana F, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev. 2016;2016: 3907147-3907147.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 Jan;21(1):103–115.
  • Miletic AV, Graham DB, Montgrain V, et al. Vav proteins control MyD88-dependent oxidative burst. Blood. 2007;109(8):3360–3368.
  • Faux SP, Tai T, Thorne D, et al. The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers. 2009 Jul;14(Suppl 1):90–96.
  • Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009 Apr 14;15(14):1702–1707.
  • Hursting SD, Berger NA. Energy balance, host-related factors, and cancer progression. J Clin Oncol. 2010;28(26):4058–4065.
  • Chulpanova DS, Kitaeva KV, Green AR, et al. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 2020;8: 402-402.
  • Cho WCS. Application of proteomics in non-small-cell lung cancer. Expert Rev Proteomics. 2016 [2016 01 02];13(1):1–4.
  • Cheung CHY, Juan H-F. Quantitative proteomics in lung cancer. J Biomed Sci. 2017 [2017 06 14];24(1):37.
  • Pan S, Aebersold R, Chen R, et al. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res. 2009 Feb;8(2):787–797.
  • Abdallah C, Dumas-Gaudot E, Renaut J, et al. Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics. 2012;2012.
  • Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC−MALDI TOF/TOF. J Proteome Res. 2006 [2006 03 01];5(3):651–658.
  • Magdeldin S, Enany S, Yoshida Y, et al. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11(1): 16-16.
  • Pastor MD, Nogal A, Molina-Pinelo S, et al. Proteomic biomarkers in lung cancer. Clin Transl Oncol. 2013 [2013 09 01];15(9):671–682.
  • Righetti PG, Castagna A, Antonucci F, et al. Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J Chromatogr A. 2004;1051(1–2):3–17.
  • Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics. 2004 Dec;1(4):401–409.
  • Li Y, Wang B, Gui S, et al. Multiple copies in T-cell malignancy 1 (MCT-1) promotes the stemness of non-small cell lung cancer cells via activating interleukin-6 (IL-6) signaling through suppressing MiR-34a expression. Med Sci Monit. 2019 Dec 31;25:10198–10204.
  • Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006 Dec;7(12):952–958.
  • Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002 Mar;66(1):39–63. table of contents.
  • DeSouza L, Diehl G, Rodrigues MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005 Mar-Apr;4(2):377–386.
  • Crutchfield CA, Thomas SN, Sokoll LJ, et al. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016 [2016 01 07];13(1):1.
  • Sallam RM. Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers. 2015 [2015 04 27];2015:321370.
  • Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next-generation Western blotting techniques. Expert Rev Proteomics. 2017;14(11):1037–1053.
  • Marrugal Á, Ojeda L, Paz-Ares L, et al. Proteomic-based approaches for the study of cytokines in lung cancer. Dis Markers. 2016;2016:2138627.
  • Mehra B, Bhattar S, Bhalla P, et al. Rapid tests versus ELISA for screening of HIV infection: our experience from a voluntary counselling and testing facility of a tertiary care centre in North India. Isrn Aids. 2014;2014: 296840-296840.
  • Delfani P, Dexlin Mellby L, Nordström M, et al. Technical advances of the recombinant antibody microarray technology platform for clinical immunoproteomics. PloS One. 2016;11(7):e0159138–e0159138.
  • Xu C, Wang W, Wang Y, et al. Serum angiopoietin-2 as a clinical marker for lung cancer in patients with solitary pulmonary nodules. Ann Clin Lab Sci. 2016;46(1):60–64. Winter.
  • Gong L, Wu D, Zou J, et al. Prognostic impact of serum and tissue MMP-9 in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016 Apr 5;7(14):18458–18468.
  • Huang RP. Cytokine protein arrays. Methods Mol Biol. 2004;264:215–231.
  • Karlsson M, Möllegård I, Stiernstedt G, et al. Comparison of Western blot and enzyme-linked immunosorbent assay for diagnosis of Lyme borreliosis. Eur J Clin Microbiol Infect Dis. 1989 Oct;8(10):871–877.
  • Mahmood T, Yang P-C. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429–434.
  • Norman KC, Moore BB, Arnold KB, et al. Proteomics: clinical and research applications in respiratory diseases. Respirology. 2018;23(11):993–1003.
  • Lehtiö J, De Petris L. Lung cancer proteomics, clinical and technological considerations. J Proteomics. 2010 Sep 10;73(10):1851–1863.
  • Liu Y, Luo X, Hu H, et al. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer. PloS One. 2012;7(12):e51748.
  • Ciereszko A, Dietrich MA, Słowińska M, et al. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PloS One. 2019;14(10):e0223840–e0223840.
  • Tyan YC, Liao PC. Proteomics analysis of serous fluids and effusions: pleural, pericardial, and peritoneal. Proteomics Clin Appl. 2007 Aug;1(8):834–844.
  • Karkhanis VS, Joshi JM. Pleural effusion: diagnosis, treatment, and management. Open Access Emerg Med. 2012;4:31–52.
  • Tyan YC, Wu HY, Su WC, et al. Proteomic analysis of human pleural effusion. Proteomics. 2005 Mar;5(4):1062–1074.
  • Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics. 2016;13(6):609–626.
  • Theodorescu D, Mischak H. Mass spectrometry based proteomics in urine biomarker discovery. World J Urol. 2007 Oct;25(5):435–443.
  • Li S, Wang R, Zhang M, et al. Proteomic analysis of non-small cell lung cancer tissue interstitial fluids. World J Surg Oncol. 2013 Aug;5(11):173.
  • Xiao H, Zhang L, Zhou H, et al. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics. 2012 Feb;11(2):M111.012112.
  • Anselmo LB, Gross JL, Haddad F, et al. Functional analysis of cells obtained from bronchoalveolar lavage fluid (BALF) of lung cancer patients. Life Sci. 2005 May 6;76(25):2945–2951.
  • Rovina N, Hillas G, Dima E, et al. VEGF and IL-18 in induced sputum of lung cancer patients. Cytokine. 2011 [2011 06 01];54(3):277–281.
  • Kleiner G, Marcuzzi A, Zanin V, et al. Cytokine levels in the serum of healthy subjects. Mediators Inflamm. 2013;2013:434010.
  • Matanić D, Beg-Zec Z, Stojanović D, et al. Cytokines in patients with lung cancer. Scand J Immunol. 2003;03/01(57):173–178.
  • Tamura M, Troyer D, Maurya D, et al. Cytokines and lung cancer. Thorac Cancer. 2011;173–187.
  • Brenner DR, Fanidi A, Grankvist K, et al. Inflammatory cytokines and lung cancer risk in 3 prospective studies. Am J Epidemiol. 2017;185(2):86–95.
  • Á M, Ojeda L, Paz-Ares L, et al. Proteomic-based approaches for the study of cytokines in lung cancer. In: Disease markers. 2016. p. 2016.
  • Chang CH, Hsiao CF, Yeh YM, et al. Circulating interleukin‐6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer. 2013;132(9):1977–1985.
  • Silva EM, Mariano VS, Pastrez PRA, et al. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PloS One. 2017;12(7):e0181125.
  • Smyth MJ, Cretney E, Kershaw MH, et al. Cytokines in cancer immunity and immunotherapy. Immunol Rev. 2004;202(1):275–293.
  • Mack CL. Serum cytokines as biomarkers of disease and clues to pathogenesis. Hepatology. 2007;46(1):6–8.
  • Kou X, Liu M. Cytokines and their relationship to the symptoms and outcome of cancer. J Int Oncol. 2010;37(3):188–190.
  • Ke W, Zhang L, Review: DY. The role of IL‐6 in immunotherapy of non‐small cell lung cancer (NSCLC) with immune‐related adverse events (irAEs). In: Thoracic Cancer. 2020. p. 02/01.
  • Bayliss TJ, Smith JT, Schuster M, et al. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther. 2011 Dec;11(12):1663–1668.
  • Colakogullari M, Ulukaya E, Yilmaztepe Oral A, et al. The involvement of IL-10, IL-6, IFN-gamma, TNF-alpha and TGF-beta gene polymorphisms among Turkish lung cancer patients. Cell Biochem Funct. 2008 Apr;26(3):283–290.
  • Chen G, Hu C, Lai P, et al. Association between TGF-beta1 rs1982073/rs1800469 polymorphism and lung cancer susceptibility: an updated meta-analysis involving 7698 cases and controls. Medicine (Baltimore). 2019 Nov;98(47):e18028.
  • Shibaki R, Murakami S, Shinno Y, et al. Predictive value of serum VEGF levels for elderly patients or for patients with poor performance status receiving anti-PD-1 antibody therapy for advanced non-small-cell lung cancer. Cancer immunology, immunotherapy: CII. 2020 Mar 10;1229-1236.
  • Yang L, Dong Y, Li Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 2019 Aug 15;145(4):1099–1110.
  • Timperi E, Focaccetti C, Gallerano D, et al. IL-18 receptor marks functional CD8(+) T cells in non-small cell lung cancer. Oncoimmunology. 2017;6(7):e1328337.
  • Shang GS, Liu L, Qin YW. IL-6 and TNF-alpha promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncol Lett. 2017 Jun;13(6):4657–4660.
  • Wang S, Campbell J, Stenmark MH, et al. Plasma levels of IL-8 and TGF-beta1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study. Int J Radiat Oncol Biol Phys. 2017 Jul 1;98(3):615–621.
  • Kasprzak A, Przewozna M, Zabel M, et al. Immunocytochemical analysis of the tissue location of cytokines (IL-2 and IL-12) in neuroendocrine lung cancer. Folia Morphol (Warsz). 2003;62(3):301–303.
  • Lin Q, Xue L, Tian T, et al. Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers. 2015 Nov 11;30(4):e359–63.
  • Li R, Ong SL, Tran LM, et al. Author Correction: chronic IL-1beta-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci Rep. 2020 Mar 4;10(1):4386.
  • Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel). 2011;3(4):3856–3893.
  • Noakes PS, Michaelis LJ. 1 - Innate and adaptive immunity. In: Calder PC, Yaqoob P, editors. Diet, Immunity and Inflammation. Woodhead Publishing; 2013. p. 3–33.
  • Ryan BM, Pine SR, Chaturvedi AK, et al. A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. J Thorac Oncol. 2014 [2014 10 01];9(10):1494–1503.
  • Kang DH, Park CK, Chung C, et al. Baseline serum interleukin-6 levels predict the response of patients with advanced non-small cell lung cancer to PD-1/PD-L1 inhibitors. Immune Netw. 2020 Jun;20(3):e27.
  • Á M, Ojeda L, Paz-Ares L, et al. Proteomic-based approaches for the study of cytokines in lung cancer. Dis Markers. 2016 [2016 06 30];2016:2138627.
  • Vahl JM, Friedrich J, Mittler S, et al. Interleukin-10-regulated tumour tolerance in non-small cell lung cancer. Br J Cancer. 2017 [2017 11 01];117(11):1644–1655.
  • Gu RH, Tan B, Ma J, et al. Diagnostic value of the combined detection of CEA, NSE and IL-18 for lung cancer and their relationship with apoptosis gene Bcl-2. J Biol Regul Homeost Agents. 2020 Sep-Oct;34(5):1637–1646.
  • Kumar S, Guleria R, Singh V, et al. Lack of utility of plasma TNF-α level in predicting therapeutic efficacy in patients with advanced non-small cell lung cancer. Cytokine. 2010 [2010 09 01];51(3):245–248.
  • Jantus-Lewintre E, Sanmartín E, Sirera R, et al. Combined VEGF-A and VEGFR-2 concentrations in plasma: diagnostic and prognostic implications in patients with advanced NSCLC. Lung Cancer. 2011 Nov;74(2):326–331.
  • Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.
  • Frezzetti D, Gallo M, Maiello MR, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 2017;21(10):959–966.
  • Lv X, Li J, Zhang C, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis. 2017;4(1):19–24.
  • Harris AL. Hypoxia — a key regulatory factor in tumour growth. Nat Rev Cancer. 2002 Jan;2(1):38–47.
  • Semenza GL. Targeting HIF-1 for cancer therapy.Nat Rev Cancer. 2003 [2003 12 01];3(10):721–732.
  • Koshikawa N, Iyozumi A, Gassmann M, et al. Constitutive upregulation of hypoxia-inducible factor-1α mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor overexpression upon hypoxic exposure. Oncogene. 2003;22(43):6717–6724.
  • Deacon K, Onion D, Kumari R, et al. Elevated SP-1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer. J Biol Chem. 2012 [2012/11/];287(47):39967–39981.
  • Shimoyamada H, Yazawa T, Sato H, et al. Early growth response-1 induces and enhances vascular endothelial growth factor-A expression in lung cancer cells. Am J Pathol. 2010;177(1):70–83.
  • Barr LF, Campbell SE, Diette GB, et al. c-Myc suppresses the tumorigenicity of lung cancer cells and down-regulates vascular endothelial growth factor expression.. Cancer Res. 2000 Jan 1;60(1):143–149.
  • Ranayhossaini DJ, Lu J, Mabus J, et al. EGF potentiation of VEGF production is cell density dependent in H292 EGFR wild type NSCLC cell line. Int J Mol Sci. 2014; 15(10): 17686–17704. cited. http://europepmc.org/abstract/MED/25272226. https://doi.org/10.3390/ijms151017686. https://europepmc.org/articles/PMC4227184. https://europepmc.org/articles/PMC4227184?pdf=render.
  • Westcott PMK, To MD. The genetics and biology of KRAS in lung cancer. Chinese Journal of Cancer. 2013;32(2):63–70.
  • Tsao MS, Liu N, Nicklee T, et al. Angiogenesis correlates with vascular endothelial growth factor expression but not with Ki-ras oncogene activation in non-small cell lung carcinoma.. Clin Cancer Res. 1997 Oct;3(10):1807–1814.
  • Konishi T, Huang CL, Adachi M, et al. The K-ras gene regulates vascular endothelial growth factor gene expression in non-small cell lung cancers.. Int J Oncol. 2000 Mar;16(3):501–511.
  • Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011: 583929-583929.
  • Schwaederlé M, Lazar V, Validire P, et al. VEGF-A expression correlates with TP53 mutations in non-small cell lung cancer: implications for antiangiogenesis therapy.. Cancer Res. 2015;75(7):1187–1190.
  • Wang B, Song N, Yu T, et al. Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer. PloS One. 2014;9(12):e115945–e115945.
  • Josephs SF, Ichim TE, Prince SM, et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 2018 [2018 08 31];16(1):242.
  • Sheng Y, Li F, Qin Z. TNF receptor 2 makes tumor necrosis factor a friend of tumors. Front Immunol. 2018;9: 1170-1170.
  • Tse BW, Scott KF, Russell PJ. Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer. 2012;2012:128965.
  • Prevost-Blondel A, Roth E, Rosenthal FM, et al. Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J Immunol. 2000 Apr 1;164(7):3645–3651.
  • Watanabe N, Niitsu Y, Umeno H, et al. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res. 1988 Apr 15;48(8):2179–2183.
  • Aggarwal BB, Shishodia S, Ashikawa K, et al. The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflammation Allergy. 2002 Dec;1(4):327–341.
  • Aggarwal BB, Shishodia S, Sandur SK, et al. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006 Nov 30;72(11):1605–1621.
  • Aggarwal BB, Shishodia S, Takada Y, et al. TNF blockade: an inflammatory issue. Ernst Schering Res Found Workshop. 2006;(56):161–186.
  • Sasi SP, Yan X, Enderling H, et al. Breaking the ‘harmony’ of TNF-α signaling for cancer treatment. Oncogene. 2012 [2012 09 01];31(37):4117–4127.
  • Balkwill F, Joffroy C. TNF: a tumor-suppressing factor or a tumor-promoting factor? Future Oncol. 2010;12/01(6):1833–1836.
  • Wu Y, BP Z. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010 [2010 02 01];102(4):639–644.
  • Zhang H, Berezov A, Wang Q, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest. 2007 Aug;117(8):2051–2058.
  • Inamura K, Ninomiya H, Ishikawa Y, et al. Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch Pathol Lab Med. 2010 Jan;134(1):66–72.
  • Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000;7(3):603–610.
  • Scagliotti GV, Selvaggi G, Novello S, et al. The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res off J Am Assoc Cancer Res. 2004 Jun 15;10(12 Pt 2):4227s–4232s.
  • Fontanini G, De Laurentiis M, Vignati S, et al. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res. 1998;4(1):241–249.
  • Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103.
  • Argast GM, Campbell JS, Brooling JT, et al. Epidermal growth factor receptor transactivation mediates tumor necrosis factor-induced hepatocyte replication. J Biol Chem. 2004 Aug 13;279(33):34530–34536.
  • Lee CW, Lin CC, Lin WN, et al. TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007 Mar;292(3):L799–812.
  • Yamaoka T, Yan F, Cao H, et al. Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11772–11777.
  • Wang S, Yan Y, Cheng Z, et al. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov. 2018;4: 26-26.
  • Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102(4):639–644.
  • Kim J-Y, Lee S, Hwangbo B, et al. NF-κB activation is related to the resistance of lung cancer cells to TNF-α-induced apoptosis. Biochem Biophys Res Commun. 2000 [2000 06 24];273(1):140–146.
  • Li J, Jia H, Xie L, et al. Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int J Gynecol Cancer. 2009 Nov;19(8):1421–1426.
  • Jin X, Wang Z, Qiu L, et al. Potential biomarkers involving IKK/RelA signal in early stage non-small cell lung cancer. Cancer Sci. 2008 Mar;99(3):582–589.
  • Gu L, Wang Z, Zuo J, et al. Prognostic significance of NF-kappaB expression in non-small cell lung cancer: a meta-analysis. PloS One. 2018;13(5):e0198223.
  • Nakajima S, Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med. 2013 Dec;65:162–174.
  • Bergqvist S, Ghosh G, Komives EA. The IkappaBalpha/NF-kappaB complex has two hot spots, one at either end of the interface. Protein Sci. 2008 Dec;17(12):2051–2058.
  • Lin Y, Bai L, Chen W, et al. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010 Jan;14(1):45–55.
  • Tang D, Tao D, Fang Y, et al. TNF-alpha promotes invasion and metastasis via NF-kappa B pathway in oral squamous cell carcinoma. Med Sci Monit Basic Res. 2017;23:141–149.
  • Birbach A, Gold P, Binder BR, et al. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem. 2002 Mar 29;277(13):10842–10851.
  • Ghosh S, Hayden MS. Celebrating 25 years of NF-kappaB research. Immunol Rev. 2012 Mar;246(1):5–13.
  • Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008 Feb 8;132(3):344–362.
  • Lu Y, Ma J, Li Y, et al. CDP138 silencing inhibits TGF-β/Smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer. Cell Death Dis. 2017 [2017 09 01];8(9):e3036–e3036.
  • Sen Y, Xiyang H, Yu H. Effect of thoracic paraspinal block-propofol intravenous general anesthesia on VEGF and TGF-β in patients receiving radical resection of lung cancer. Medicine (Baltimore). 2019;98(47):e18088.
  • Murai F, Koinuma D, Shinozaki-Ushiku A, et al. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov. 2015 [2015 09 22];1(1):15026.
  • Yang H, Zhan L, Yang T, et al. Ski prevents TGF-beta-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer. Oncol Rep. 2015 Jul;34(1):87–94.
  • Liu R-Y, Zeng Y, Lei Z, et al. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 2014;44(5):1643–1651.
  • Naumnik W, Naumnik B, Niewiarowska K, et al. Angiogenic axis angiopoietin-1 and angiopoietin-2/Tie-2 in non-small cell lung cancer: a bronchoalveolar lavage and serum study. Adv Exp Med Biol. 2013;788:341–348.
  • Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004 Aug 6;118(3):277–279.
  • Ke Y, Zhao W, Xiong J, et al. miR-149 inhibits non-small-cell lung cancer cells EMT by targeting FOXM1. Biochem Res Int. 2013;2013: 506731-506731.
  • Hua W, Ten Dijke P, Kostidis S, et al. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 2019; 2019:2103-2123.
  • Li J, Shen C, Wang X, et al. Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis. BMC Cancer. 2019;19(1):691.
  • Chen T, Zhu J, Cai T, et al. Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2 signaling pathway [research paper]. J Cancer. 2019;10(24):6014–6024.
  • Wang L, Tong X, Zhou Z, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TIF1gamma in non-small cell lung cancer. Mol Cancer. 2018 Sep 27;17(1):140.
  • Mali AV, Joshi AA, Hegde MV, et al. Enterolactone modulates the ERK/NF-kappaB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-beta-induced epithelial-mesenchymal transition. Cancer Biol Med. 2018 May;15(2):137–156.
  • Vincent T, Neve EP, Johnson JR, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009 Aug;11(8):943–950.
  • Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 2006 Feb-Apr;17(1–2):19–27.
  • Smith AP, Verrecchia A, Faga G, et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009 Jan 22;28(3):422–430.
  • Reka AK, Kurapati H, Narala VR, et al. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol Cancer Ther. 2010 Dec;9(12):3221–3232.
  • Choudhary R, Li H, Winn RA, et al. Peroxisome proliferator-activated receptor-gamma inhibits transformed growth of non-small cell lung cancer cells through selective suppression of Snail. Neoplasia. 2010;12(3):224–234.
  • Muqbil I, Wu J, Aboukameel A, et al. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol. 2014;27:39–45.
  • Li M, Zhang X, Hu K, et al. Prognostic role of snail in lung cancer: protocol for a systematic review. Medicine (Baltimore). 2018 Jul;97(28):e11539.
  • Zavadil J, Bitzer M, Liang D, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6686–6691.
  • Landstrom M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010 May;42(5):585–589.
  • Song J, Landström M. TGFβ activates PI3K-AKT signaling via TRAF6. Oncotarget. 2017;8(59):99205–99206.
  • Lin T, Zeng L, Liu Y, et al. Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res. 2003 Jun 27;92(12):1296–1304.
  • Lee MK, Pardoux C, Hall MC, et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. Embo J. 2007 Sep 5;26(17):3957–3967.
  • Davies M, Robinson M, Smith E, et al. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem. 2005 Aug 1;95(5):918–931.
  • Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-beta-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014 Dec;31:56–66.
  • Castro F, Cardoso AP, Gonçalves RM, et al. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9: 847-847.
  • Yu J, Wei M, Becknell B, et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity. 2006 May;24(5):575–590.
  • Keppel MP, Saucier N, Mah AY, et al. Activation-specific metabolic requirements for NK Cell IFN-gamma production. J Immunol. 2015 Feb 15;194(4):1954–1962.
  • Schoenborn J, Wilson C. Regulation of interferon‐γ during innate and adaptive immune responses. Adv Immunol. 2007;02/01(96):41–101.
  • Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018;10:1758834017749748.
  • Gao Y, Yang J, Cai Y, et al. IFN-gamma-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018 Aug 15;143(4):931–943.
  • Zhang X, Zeng Y, Qu Q, et al. PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 2017 Dec;22(6):1026–1033.
  • De Veer MJ, Holko M, Frevel M, et al. Functional classification of interferon‐stimulated genes identified using microarrays. J Leukoc Biol. 2001;69(6):912–920.
  • Halonen SK, Woods T, McInnerney K, et al. Microarray analysis of IFN-γ response genes in astrocytes. J Neuroimmunol. 2006;175(1–2):19–30.
  • Rock R, Hu S, Deshpande A, et al. Transcriptional response of human microglial cells to interferon-γ. Genes Immun. 2005;6(8):712–719.
  • Majoros A, Platanitis E, Kernbauer-Hölzl E, et al. Canonical and non-canonical aspects of JAK–STAT signaling: lessons from interferons for cytokine responses. Front Immunol. 2017;8:29.
  • Castro F, Cardoso AP, Gonçalves RM, et al. Interferon-gamma at the crossroads of tumor immune surveillance or evasion [review]. Front Immunol. 2018;9:847.
  • Xing S, TH W, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood J Am Soc Hematol. 2008;111(10):5109–5117.
  • Flex E, Petrangeli V, Stella L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008;205(4):751–758.
  • Endo TA, Masuhara M, Yokouchi M, et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997;387(6636):921–924.
  • Starr R, Willson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387(6636):917.
  • Kim WS, Kim MJ, Kim DO, et al. Suppressor of cytokine signaling 2 negatively regulates NK cell differentiation by inhibiting JAK2 activity. Sci Rep. 2017;7:46153.
  • Choudhury GG. A linear signal transduction pathway involving phosphatidylinositol 3-kinase, protein kinase C∈, and MAPK in mesangial cells regulates interferon-γ-induced STAT1α transcriptional activation. J Biol Chem. 2004;279(26):27399–27409.
  • De Vita F, Orditura M, Auriemma A, et al. Serum levels of interleukin-6 as a prognostic factor in advanced non-small cell lung cancer. Oncol Rep. 1998 May-Jun;5(3):649–652.
  • Chang K-T, Tsai C-M, Chiou Y-C, et al. IL-6 induces neuroendocrine dedifferentiation and cell proliferation in non-small cell lung cancer cells. Am J Physiol Lung Cell Mol Physiol. 2005;289(3):L446–L453.
  • Song L, Rawal B, Nemeth JA, et al. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther. 2011 Mar;10(3):481–494.
  • Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016 Jan;12(1):14–24.
  • Millares L, Barreiro E, Cortes R, et al. Tumor-associated metabolic and inflammatory responses in early stage non-small cell lung cancer: local patterns and prognostic significance. Lung Cancer. 2018;122:124–130.
  • Garon EB, Chih-Hsin Yang J, Dubinett SM. The role of interleukin 1β in the pathogenesis of lung cancer. JTO Clin Res Rep. 2020 [2020 03 01];1(1):100001.
  • Vainer N, Dehlendorff C, Johansen JS. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget. 2018;9(51):29820–29841.
  • Monastero RN, Pentyala S. Cytokines as Biomarkers and Their Respective Clinical Cutoff Levels. Int J Inflam. 2017 [2017 04 09];2017:4309485.
  • Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016;11:1391–1401.
  • Van Gorp H, Lamkanfi M The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO reports. 2019 Jun;20( 6).
  • Idris A, Ghazali NB, Koh D. Interleukin 1β-A potential salivary biomarker for cancer progression? Biomark Cancer. 2015;7:25–29.
  • Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest. 2005 Nov;115(11):2979–2991.
  • Meng X, Lu P, Bai H, et al. Transcriptional regulatory networks in human lung adenocarcinoma. Mol Med Rep. 2012 Nov;6(5):961–966.
  • You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.
  • Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J Immunother. 2001;24(5):392–407.
  • Kajdaniuk D, Marek B, Borgiel-Marek H, et al. Transforming growth factor β1 (TGFβ1) in physiology and pathology. Endokrynol Pol. 2013;64(5):384–396.
  • Tekpli X, Landvik NE, Anmarkud KH, et al. DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer. Cancer Immunol Immunother. 2013 Feb;62(2):337–345.
  • Ma D, Jiang C, Hu X, et al. Methylation patterns of the IFN-γ gene in cervical cancer tissues. Sci Rep. 2014 [2014 09 11];4(1):6331.
  • Wang F, Xu J, Zhu Q, et al. Downregulation of IFNG in CD4(+) T cells in lung cancer through hypermethylation: a possible mechanism of tumor-induced immunosuppression. PLoS One. 2013;8(11):e79064.
  • Dias S, Boyd R, Balkwill F. IL‐12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer. 1998;78(3):361–365.
  • Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996.
  • Voest EE, Kenyon BM, O’Reilly MS, et al. Inhibition of angiogenesis in vivo by interleukin 12. JNCI. 1995;87(8):581–586.
  • Duda DG, Sunamura M, Lozonschi L, et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res. 2000;60(4):1111–1116.
  • Shanker M, Willcutts D, Roth JA, et al. Drug resistance in lung cancer. Lung Cancer (Auckl). 2010;1:23–36.
  • Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer. 2018;9(10):1773–1781.
  • Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009 Dec 25;625(1–3):41–54.
  • Lesterhuis WJ, Haanen JBAG, Punt CJA. Cancer immunotherapy – revisited. Nat Rev Drug Discov. 2011 [2011 08 01];10(8):591–600.
  • Hung LVM, Ngo HT, Van Pham P. Clinical trials with cytokine-induced killer cells and CAR-T cell transplantation for non-small cell lung cancer treatment. Adv Exp Med Biol. 2020;1292:113–130.
  • Wu C, Jiang J, Shi L, et al. Prospective study of chemotherapy in combination with cytokine-induced killer cells in patients suffering from advanced non-small cell lung cancer. Anticancer Res. 2008;Nov-Dec;28(6b):3997-4002.
  • Zhong R, Teng J, Han B, et al. Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol Immunother. 2011 Oct;60(10):1497–1502.
  • Li H, Wang C, Yu J, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11(8):1076–1083.
  • Zhao G, Huang Y, Ye L, et al. [Therapeutic efficacy of traditional vein chemotherapy and bronchial arterial infusion combining with ciks on iii stage non-small cell lung cancer.]. Zhongguo Fei Ai Za Zhi. 2009 Sep 20;12(9):1000–1004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.