839
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteomics applications in biomarker discovery and pathogenesis for abdominal aortic aneurysm

ORCID Icon, , , &
Pages 305-314 | Received 04 Mar 2021, Accepted 09 Apr 2021, Published online: 04 May 2021

References

  • Evans GH, Stansby G, Hamilton G. Suggested standards for reporting on arterial aneurysms. J Vasc Surg. 1992;15(2):456.
  • Zarrouk M, Holst J, Malina M, et al. The importance of socioeconomic factors for compliance and outcome at screening for abdominal aortic aneurysm in 65-year-old men. J Vasc Surg. 2013;58(1):50–55.
  • Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.
  • Sakalihasan N, Michel JB, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018;4(1):34.
  • Kent KC, Zwolak RM, Egorova NN, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg. 2010;52(3):539–548.
  • Kent KC. Clinical practice. Abdominal aortic aneurysms. N Engl J Med. 2014;371(22):2101–2108.
  • Cosford PA, Leng GC. Screening for abdominal aortic aneurysm. Cochrane Database Syst Rev. 2007;2:CD002945. DOI:10.1002/14651858.CD002945.pub2
  • Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American associations for vascular surgery/society for vascular surgery, society for cardiovascular angiography and interventions, society for vascular medicine and biology, society of interventional radiology, and the ACC/AHA task force on practice guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease)–summary of recommendations. J Vasc Interv Radiol. 2006;17(9):1383–1397. quiz 1398.
  • Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–944.
  • Raffort J, Lareyre F, Clément M, et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol. 2017;14(8):457–471.
  • Cameron SJ, Russell HM, Owens AP 3rd. Antithrombotic therapy in abdominal aortic aneurysm: beneficial or detrimental? Blood. 2018;132(25):2619–2628.
  • Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16(4):225–242.
  • Emeto TI, Moxon JV, Au M, et al. Oxidative stress and abdominal aortic aneurysm: potential treatment targets. Clin sci. 2016;130(5):301–315.
  • Lederle FA. Abdominal aortic aneurysm: still no pill. Ann Intern Med. 2013;159(12):852–853.
  • Chaikof EL, Dalman RL, Eskandari MK, et al. The society for vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67(1):2–77.e72.
  • Wanhainen A, Verzini F, Van Herzeele I, et al. Editor’s choice - European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg. 2019;57(1):8–93.
  • Badger S, Forster R, Blair PH, et al. Endovascular treatment for ruptured abdominal aortic aneurysm. Cochrane Database Syst Rev. 2017;5(5):Cd005261.
  • Björck M, Bown MJ, Choke E, et al. International update on screening for abdominal aortic aneurysms: issues and opportunities. Eur J Vasc Endovasc Surg. 2015;49(2):113–115.
  • Oliver-Williams C, Sweeting MJ, Turton G, et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. Br J Surg. 2018;105(1):68–74.
  • Powell JT, Brady AR, Brown LC, et al. Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002;346(19):1445–1452.
  • Parkinson F, Ferguson S, Lewis P, et al. South East Wales Vascular N. Rupture rates of untreated large abdominal aortic aneurysms in patients unfit for elective repair. J Vasc Surg. 2015;61(6):1606–1612.
  • Bath MF, Gokani VJ, Sidloff DA, et al. Systematic review of cardiovascular disease and cardiovascular death in patients with a small abdominal aortic aneurysm. Br J Surg. 2015;102(8):866–872.
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and Their Applications. J Chromatogr Sci. 2017;55(2):182–196.
  • Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–1113.
  • Abdallah C, Dumas-Gaudot E, Renaut J, et al. Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics. 2012;494572:2012.
  • Cheung CHY, Juan HF. Quantitative proteomics in lung cancer. J Biomed Sci. 2017;24(1):37.
  • Neilson KA, Ali NA, Muralidharan S, et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 2011;11(4):535–553.
  • Kleifeld O, Doucet A, Prudova A, et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc. 2011;6(10):1578–1611.
  • Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–386.
  • Pham TV, Piersma SR, Oudgenoeg G, et al. Label-free mass spectrometry-based proteomics for biomarker discovery and validation. Expert Rev Mol Diagn. 2012;12(4):343–359.
  • Calderón-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2018;37(6):715–737.
  • Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
  • Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–636.
  • Gamberi T, Puglia M, Guidi F, et al. A proteomic approach to identify plasma proteins in patients with abdominal aortic aneurysm. Mol Biosyst. 2011;7(10):2855–2862.
  • Spadaccio C, Di Domenico F, Perluigi M, et al. Serum proteomics in patients with diagnosis of abdominal aortic aneurysm. Cardiovasc Pathol. 2012;21(4):283–290.
  • Wallinder J, Bergstrom J, Henriksson AE. Discovery of a novel circulating biomarker in patients with abdominal aortic aneurysm: a pilot study using a proteomic approach. Clin Transl Sci. 2012;5(1):56–59.
  • O’Brien KD, Pineda C, Chiu WS, et al. Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes. Circulation. 1999;99(22):2876–2882.
  • Ehsan S, Ball G, Choke E, et al. Disease specific biomarkers of abdominal aortic aneurysms detected by surface enhanced laser desorption ionization time of flight mass spectrometry. Eur J Vasc Endovasc Surg. 2012;44(1):52–54.
  • Acosta-Martin AE, Panchaud A, Chwastyniak M, et al. Quantitative mass spectrometry analysis using PAcIFIC for the identification of plasma diagnostic biomarkers for abdominal aortic aneurysm. PLoS One. 2011;6(12):e28698.
  • Kaschina E, Stoll M, Sommerfeld M, et al. Genetic kininogen deficiency contributes to aortic aneurysm formation but not to atherosclerosis. Physiol Genomics. 2004;19(1):41–49.
  • Stather PW, Sidloff DA, Dattani N, et al. Meta-analysis and meta-regression analysis of biomarkers for abdominal aortic aneurysm. Br J Surg. 2014;101(11):1358–1372.
  • Jorge I, Burillo E, Mesa R, et al. The human HDL proteome displays high inter-individual variability and is altered dynamically in response to angioplasty-induced atheroma plaque rupture. J Proteomics. 2014;106(61–73):61–73.
  • Yan LR, Wang DX, Liu H, et al. A pro-atherogenic HDL profile in coronary heart disease patients: an iTRAQ labelling-based proteomic approach. PLoS One. 2014;9(5):e98368.
  • Tan Y, Liu TR, Hu SW, et al. Acute coronary syndrome remodels the protein cargo and functions of high-density lipoprotein subfractions. PLoS One. 2014;9(4):e94264.
  • Burillo E, Jorge I, Martinez-Lopez D, et al. Quantitative HDL proteomics identifies peroxiredoxin-6 as a biomarker of human abdominal aortic aneurysm. Sci Rep. 2016;6(38477). DOI:10.1038/srep38477.
  • Henriksson AE, Lindqvist M, Sihlbom C, et al. Identification of potential plasma biomarkers for abdominal aortic aneurysm using tandem mass tag quantitative proteomics. Proteomes. 2018;6(4):43.
  • Moxon JV, Padula MP, Clancy P, et al. Proteomic analysis of intra-arterial thrombus secretions reveals a negative association of clusterin and thrombospondin-1 with abdominal aortic aneurysm. Atherosclerosis. 2011;219(2):432–439.
  • Gurung R, Choong AM, Woo CC, et al. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int J Mol Sci. 2020;21(17):6334.
  • Yokoyama U, Arakawa N, Ishiwata R, et al. Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. Am J Physiol Heart Circ Physiol. 2018;315(4):H1012–h1018.
  • Norman PE, Powell JT. Site specificity of aneurysmal disease. Circulation. 2010;121(4):560–568.
  • Nordon IM, Hinchliffe RJ, Malkawi AH, et al. Comparative proteomics reveals a systemic vulnerability in the vasculature of patients with abdominal aortic aneurysms. J Vasc Surg. 2011;54(4):1100–1108.e1106.
  • Kidholm CL, Beck HC, Madsen JB, et al. Preliminary analysis of proteome alterations in non-aneurysmal, internal mammary artery tissue from patients with abdominal aortic aneurysms. PLoS One. 2018;13(2):e0192957.
  • Molacek J, Mares J, Treska V, et al. Proteomic analysis of the abdominal aortic aneurysm wall. Surg Today. 2014;44(1):142–151.
  • Matsumoto K, Maniwa T, Tanaka T, et al. Proteomic analysis of calcified abdominal and thoracic aortic aneurysms. Int J Mol Med. 2012;30(2):417–429.
  • Pinard A, Jones GT, Milewicz DM. Genetics of thoracic and abdominal aortic diseases. Circ Res. 2019;124(4):588–606.
  • Lu H, Daugherty A. Aortic aneurysms. Arterioscler Thromb Vasc Biol. 2017;37(6):e59–e65.
  • Matsumoto K, Satoh K, Maniwa T, et al. Proteomic comparison between abdominal and thoracic aortic aneurysms. Int J Mol Med. 2014;33(4):1035–1047.
  • Jana S, Hu M, Shen M, et al. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp Mol Med. 2019;51(12):1–15.
  • Rabkin SW. The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci. 2017;147:239–265.
  • Didangelos A, Yin X, Mandal K, et al. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics. 2011;10(8):M111.008128.
  • Ren J, Han Y, Ren T, et al. AEBP1 promotes the occurrence and development of abdominal aortic aneurysm by modulating inflammation via the NF-κB pathway. J Atheroscler Thromb. 2020;27(3):255–270.
  • Parr A, McCann M, Bradshaw B, et al. Thrombus volume is associated with cardiovascular events and aneurysm growth in patients who have abdominal aortic aneurysms. J Vasc Surg. 2011;53(1):28–35.
  • Dejouvencel T, Féron D, Rossignol P, et al. Hemorphin 7 reflects hemoglobin proteolysis in abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2010;30(2):269–275.
  • Golledge J, Van Bockxmeer F, Jamrozik K, et al. Association between serum lipoproteins and abdominal aortic aneurysm. Am J Cardiol. 2010;105(10):1480–1484.
  • Takagi H, Manabe H, Umemoto T. A meta-analysis of association between serum lipoproteins and abdominal aortic aneurysm. Am J Cardiol. 2010;106(5):753–754.
  • Martínez-López D, Camafeita E, Cedó L, et al. APOA1 oxidation is associated to dysfunctional high-density lipoproteins in human abdominal aortic aneurysm. EBioMedicine. 2019; 43(43–53). DOI: 10.1016/j.ebiom.2019.04.012.
  • Spadaccio C, Coccia R, Perluigi M, et al. Redox proteomic analysis of serum from aortic anerurysm patients: insights on oxidation of specific protein target. Mol Biosyst. 2016;12(7):2168–2177.
  • Burillo E, Tarin C, Torres-Fonseca MM, et al. Paraoxonase-1 overexpression prevents experimental abdominal aortic aneurysm progression. Clin Sci (Lond). 2016;130(12):1027–1038.
  • Tong J, Holzapfel GA. Structure, mechanics, and histology of intraluminal thrombi in abdominal aortic aneurysms. Ann Biomed Eng. 2015;43(7):1488–1501.
  • Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5(84). DOI:10.3389/fphys.2014.00084
  • Ramos-Mozo P, Madrigal-Matute J, Martinez-Pinna R, et al. Proteomic analysis of polymorphonuclear neutrophils identifies catalase as a novel biomarker of abdominal aortic aneurysm: potential implication of oxidative stress in abdominal aortic aneurysm progression. Arterioscler Thromb Vasc Biol. 2011;31(12):3011–3019.
  • Martinez-Pinna R, Burillo E, Madrigal-Matute J, et al. Label-free proteomic analysis of red blood cell membrane fractions from abdominal aortic aneurysm patients. Proteomics Clin Appl. 2014;8(7–8):626–630.
  • Martinez-Pinna R, Gonzalez de Peredo A, Monsarrat B, et al. Label-free quantitative proteomic analysis of human plasma-derived microvesicles to find protein signatures of abdominal aortic aneurysms. Proteomics Clin Appl. 2014;8(7–8):620–625.
  • Hoornweg LL, Storm-Versloot MN, Ubbink DT, et al. Meta analysis on mortality of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008;35(5):558–570.
  • Schmitz-Rixen T, Keese M, Hakimi M, et al. Ruptured abdominal aortic aneurysm-epidemiology, predisposing factors, and biology. Langenbecks Arch Surg. 2016;401(3):275–288.
  • Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, et al. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2011;31(4):935–943.
  • Martinez-Pinna R, Madrigal-Matute J, Tarin C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2013;33(8):2013–2020.
  • Behr Andersen C, Lindholt JS, Urbonavicius S, et al. Abdominal aortic aneurysms growth is associated with high concentrations of plasma proteins in the intraluminal thrombus and diseased arterial tissue. Arterioscler Thromb Vasc Biol. 2018;38(9):2254–2267.
  • Lee R, Cassimee I, Huang H, et al. Integrated plasma and tissue proteomics reveals attractin release by intraluminal thrombus of abdominal aortic aneurysms and improves aneurysm growth prediction in humans. Ann surg. 2020;Publish Ahead of Print. DOI:10.1097/SLA.0000000000004439.
  • Burillo E, Lindholt JS, Molina-Sanchez P, et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost. 2015;113(6):1335–1346.
  • Zhao M, Li M, Yang Y, et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep. 2017;7(1):3024.
  • Abdulkareem N, Skroblin P, Jahangiri M, et al. Proteomics in aortic aneurysm–what have we learnt so far? Proteomics Clin Appl. 2013;7(7–8):504–515.
  • Oda T, Matsumoto K. Proteomic analysis in cardiovascular research. Surg Today. 2016;46(3):285–296.
  • Mokou M, Lygirou V, Vlahou A, et al. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics. 2017;14(2):117–136.
  • Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol. 2019;20(5):285–302.
  • Memon AA, Zarrouk M, Ågren-Witteschus S, et al. Identification of novel diagnostic and prognostic biomarkers for abdominal aortic aneurysm. Eur J Prev Cardiol. 2020;27(2):132–142.
  • Lee R, Charles PD, Lapolla P, et al. Integrated physiological and biochemical assessments for the prediction of growth of abdominal aortic aneurysms in humans. Ann Surg. 2019;270(1):e1–e3.
  • Li Y, Yang D, Sun B, et al. Discovery of crucial cytokines associated with abdominal aortic aneurysm formation by protein array analysis. Exp Biol Med (Maywood). 2019;244(18):1648–1657.
  • Yuwen L, Ciqiu Y, Yi S, et al. A pilot study of protein microarray for simultaneous analysis of 274 cytokines between abdominal aortic aneurysm and normal aorta. Angiology. 2019;70(9):830–837.
  • Mermelekas G, Vlahou A, Zoidakis J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn. 2015;15(11):1441–1454.
  • Ludwig C, Gillet L, Rosenberger G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8):e8126.
  • Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics. 2018;189:75–90. DOI: 10.1016/j.jprot.2018.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.