983
Views
2
CrossRef citations to date
0
Altmetric
Review

Mitochondrial dysfunction in Alzheimer’s disease - a proteomics perspective

ORCID Icon, , , , , , , , , , , , & show all
Pages 295-304 | Received 25 Feb 2021, Accepted 14 Apr 2021, Published online: 03 May 2021

References

  • Seward ME, Swanson E, Norambuena A, et al. Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci. 2013;126(Pt 5):1278–1286.
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–18.
  • Prince M, Wimo A, Guerchet M, et al. The global impact of dementia. World Alzheimer Rep. 2015;1–82.
  • Nichols E, Szoeke CE, Vollset SE, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(1):88–106.
  • Rocca WA, Petersen RC, Knopman DS, et al. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement. 2011;7(1):80–93.
  • Huang L-K, Chao S-P, Hu C-J. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci. 2020;27(1):1–13.
  • Yiannopoulou KG, Papageorgiou SG. Current and future treatments in alzheimer disease: an update. J Cent Nerv Syst Dis. 2020;12:1179573520907397.
  • Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: an update. Ann Neurosci. 2017;24(1):46–54.
  • Van Der Kant R, Goldstein LS, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020;21(1):21–35.
  • Chen G-F, Xu T-H, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235.
  • Deng L, Haynes PA, Wu Y, et al. Amyloid-beta peptide neurotoxicity in human neuronal cells is associated with modulation of insulin-like growth factor transport, lysosomal machinery and extracellular matrix receptor interactions. Neural Regen Res. 2020;15(11):2131–2142.
  • Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov. 2020.
  • Talwar P, Sinha J, Grover S, et al. Dissecting complex and multifactorial nature of Alzheimer’s disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol Neurobiol. 2016;53(7):4833–4864.
  • Cenini G, Voos W. Mitochondria as potential targets in Alzheimer disease therapy: an update. Front Pharmacol. 2019;10:10.
  • Gupta VB, Chitranshi N, Den Haan J, et al. Retinal changes in Alzheimer’s disease— integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res.2020;100899.10.1016/j.preteyeres.2020.100899
  • Mirzaei M, Gupta VB, Chick JM, et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep. 2017;7(1):12685.
  • Mirzaei M, Pushpitha K, Deng L, et al. Upregulation of proteolytic pathways and altered protein biosynthesis underlie retinal pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2019;56(9):6017–6034.
  • Mirzaei M, Gupta VK, Chitranshi N, et al. Retinal proteomics of experimental glaucoma model reveal intraocular pressure‐induced mediators of neurodegenerative changes. J Cell Biochem. 2020;121(12):4931–4944.
  • Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106:17–32.
  • Carmo C, Naia L, Lopes C, et al. Mitochondrial dysfunction in Huntington’s disease. Polyglutamine Disord. 2018;1049:59–83.
  • Shi P, Gal J, Kwinter DM, et al. Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis. 2010;1802(1):45–51.
  • Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012;4(9):a011403.
  • McCarron JG, Wilson C, Sandison ME, et al. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res. 2013;50(5):357–371.
  • Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13(1):1–11.
  • Garrido C, Galluzzi L, Brunet M, et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423–1433.
  • Kruse R, Sahebekhtiari N, Højlund K. The mitochondrial proteomic signatures of human skeletal muscle linked to insulin resistance. Int J Mol Sci. 2020;21(15):5374.
  • Johannsen DL, Ravussin E. The role of mitochondria in health and disease. Curr Opin Pharmacol. 2009;9(6):780–786.
  • Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159.
  • Rango M, Bresolin N. Brain mitochondria, aging, and Parkinson’s disease. Genes (Basel). 2018;9(5):250.
  • Fecher C, Trovò L, Müller SA, et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci. 2019;22(10):1731–1742.
  • Friede RL. Enzyme histochemical studies of senile plaques. J Neuropathol Exp Neurol. 1965;24(3):477–491.
  • Swerdlow RH, Kish SJ. Mitochondria in Alzheimer’s disease. Int Rev Neurobiol. 2002;53:341–385.
  • Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–3023.
  • Wang W, Zhao F, Ma X, et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener. 2020;15:1–22.
  • Hauptmann S, Scherping I, Dröse S, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30(10):1574–1586.
  • Fang X, Lee CS. Proteome characterization of mouse brain mitochondria using electrospray ionization tandem mass spectrometry. Methods Enzymol. 2009;457:49–62.
  • Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol. 2012;5(1):11.
  • Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics. 2016;13(3):259–274.
  • Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol. 2020;21(1):1–17.
  • Endo T, Yamano K, Kawano S. Structural insight into the mitochondrial protein import system. Biochimi Biophys Acta (BBA) Biomembr. 2011;1808(3):955–970.
  • Couvillion MT, Soto IC, Shipkovenska G, et al. Synchronized mitochondrial and cytosolic translation programs. Nature. 2016;533(7604):499–503.
  • Kawahara M, Ohtsuka I, Yokoyama S, et al. Membrane incorporation, channel formation, and disruption of calcium Homeostasis by Alzheimer’s β Amyloid protein. Int J Alzheimer’s Dis. 2011;2011:1–17. [ 2011].
  • Han XJ, Hu YY, Yang ZJ, et al. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol Med Rep. 2017;16(4):4521–4528.
  • Petersen CAH, Alikhani N, Behbahani H, et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Nat Acad Sci. 2008;105(35):13145–13150.
  • Pinho CM, Teixeira PF, Glaser E. Mitochondrial import and degradation of amyloid-β peptide. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014;1837(7):1069–1074.
  • Lovell MA, Xiong S, Markesbery WR, et al. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res. 2005;30(1):113–122.
  • David DC, Hauptmann S, Scherping I, et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem. 2005;280(25):23802–23814.
  • Chou JL, Shenoy DV, Thomas N, et al. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer’s disease. J Proteomics. 2011;74(4):466–479.
  • Chakroborty S, Kim J, Schneider C, et al. Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice. J Neurosci. 2012;32(24):8341–8353.
  • Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2010;20(s2):S487–S498.
  • Keinan N, Pahima H, Ben-Hail D, et al. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim Biophys Acta-Mol Cell Res. 2013;1833(7):1745–1754.
  • Magi S, Castaldo P, Macrì ML, et al. Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int. 2016 2016;2016: 1–14.
  • Kadowaki H, Nishitoh H, Urano F, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19–24.
  • Liu Z, Li T, Li P, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev. 2015 2015;2015: 1–12.
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–464.
  • Guo C, Sun L, Chen X, et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003.
  • Shen L, Yang A, Chen X, et al. Proteomic profiling of cerebrum mitochondria, myelin sheath, and synaptosome revealed mitochondrial damage and synaptic impairments in association with 3× Tg‐AD mice model. Cell Mol Neurobiol. 2021;41(1):1–19.
  • Cui J, Wang L, Ren X, et al. LRPPRC: a multifunctional protein involved in energy metabolism and human disease. Front Physiol. 2019;10:595.
  • Li KW, Ganz AB, Smit AB. Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem. 2019;151(4):435–445.
  • Signorile A, Sgaramella G, Bellomo F, et al. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8(1):71.
  • Zhou P, Qian L, D’Aurelio M, et al. Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. J Neurosci. 2012;32(2):583–592.
  • Lachen-Montes M, González-Morales A, Palomino M, et al. Early-onset molecular derangements in the olfactory bulb of Tg2576 mice: novel insights into the stress-responsive olfactory kinase dynamics in Alzheimer’s disease. Front Aging Neurosci. 2019;11:141.
  • Lachén-Montes M, González-Morales A, Zelaya MV, et al. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer’s disease progression. Sci Rep. 2017;7(1):1–15.
  • Merkwirth C, Martinelli P, Korwitz A, et al. Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration. PLoS Genet. 2012;8(11):e1003021.
  • Rhein V, Song X, Wiesner A, et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Nat Acad Sci. 2009;106(47):20057–20062.
  • Thygesen C, Metaxas A, Larsen MR, et al. Age-dependent changes in the sarkosyl-insoluble proteome of APP SWE/PS1 ΔE9 transgenic mice implicate dysfunctional mitochondria in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis. 2018;64(4):1247–1259.
  • Walls KC, Coskun P, Gallegos-Perez JL, et al. Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J Biol Chem. 2012;287(36):30317–30327.
  • Mangione MR, Vilasi S, Marino C, et al. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta. 2016;1860(11):2474–2483.
  • Yu H, Lin X, Wang D, et al. Mitochondrial molecular abnormalities revealed by proteomic analysis of hippocampal organelles of mice triple transgenic for Alzheimer disease. Front Mol Neurosci. 2018;11:74.
  • Roy M, Reddy PH, Iijima M, et al. Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol. 2015;33:111–118.
  • Shirendeb UP, Calkins MJ, Manczak M, et al. Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet. 2012;21(2):406–420.
  • Manczak M, Reddy PH. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet. 2012;21(11):2538–2547.
  • Kücükköse C, Taskin AA, Marada A, et al. Functional coupling of presequence processing and degradation in human mitochondria. FEBS J. 2020;288(2):600–613.
  • Mossmann D, Vögtle F-N, Taskin AA, et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 2014;20(4):662–669.
  • Lynn BC, Wang J, Markesbery WR, et al. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage, and late stage Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):325–339.
  • Gillardon F, Rist W, Kussmaul L, et al. Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics. 2007;7(4):605–616.
  • Stroud DA, Formosa LE, Wijeyeratne XW, et al. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. J Biol Chem. 2013;288(3):1685–1690.
  • Adav SS, Park JE, Sze SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain. 2019;12(1):1–12.
  • Du X, Shi Q, Zhao Y, et al. Se-methylselenocysteine (smc) improves cognitive deficits by attenuating synaptic and metabolic abnormalities in Alzheimer’s mice model: a proteomic study. ACS Chem Neurosci. 2021;12(7):1112–1132.
  • Lloret A, Esteve D, Lloret M-A, et al. When does Alzheimer′ s disease really start? The role of biomarkers. Int J Mol Sci. 2019;20(22):5536.
  • Beason-Held LL, Goh JO, An Y, et al. Changes in brain function occur years before the onset of cognitive impairment. J Neurosci. 2013;33(46):18008–18014.
  • Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323.
  • Dey KK, Wang H, Niu M, et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics. 2019;16(1):1–12.
  • Wang H, Dey KK, Chen P-C, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):1–20.
  • Bader JM, Geyer PE, Müller JB, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol Syst Biol. 2020;16(6):e9356.
  • Yin J, Reiman EM, Beach TG, et al. Effect of ApoE isoforms on mitochondria in Alzheimer disease. Neurology. 2020;94(23):e2404–e2411.
  • Abyadeh M, Djafarian K, Heydarinejad F, et al. Association between apolipoprotein E Gene polymorphism and Alzheimer’s disease in an iranian population: a meta-analysis. J Mol Neurosci. 2019;69(4):557–562.
  • Hesse R, Hurtado ML, Jackson RJ, et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol Commun. 2019;7(1):1–18.
  • Deng L, Gupta VK, Wu Y, et al. Mouse model of Alzheimer’s disease demonstrates differential effects of early disease pathology on various brain regions. Proteomics. 2021;21(7–8):2000213.
  • He K, Nie L, Zhou Q, et al. Proteomic Profiles of the Early Mitochondrial Changes in APP/PS1 and ApoE4 Transgenic Mice Models of Alzheimer’s Disease. J Proteome Res • This study showed the significant effect of APOE polymorphism on AD-related mitochondrial proteome changes.. 2019;18(6):2632–2642.
  • Beam CR, Kaneshiro C, Jang JY, et al. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimers Dis. 2018;64(4):1077–1083.
  • De Leeuw F, De Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The rotterdam scan study. J Neurol Neurosurg. 2001;70(1):9–14.
  • Van Den Heuvel D, Admiraal-Behloul F, Ten Dam V, et al. Different progression rates for deep white matter hyperintensities in elderly men and women. Neurology. 2004;63(9):1699–1701.
  • Mortensen E, Høgh P. A gender difference in the association between APOE genotype and age-related cognitive decline. Neurology. 2001;57(1):89–95.
  • Shi L, Du X, Zhou H, et al. Cumulative effects of the ApoE genotype and gender on the synaptic proteome and oxidative stress in the mouse brain. Int J Neuropsychopharmacol. 2014;17(11):1863–1879.
  • Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease-lessons from pathology. BMC Med. 2014;12(1):1–12.
  • Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke. 2011;42(9):2672–2713.
  • Qiu C, Xu W, Winblad B, et al. Vascular risk profiles for dementia and Alzheimer’s disease in very old people: a population-based longitudinal study. J Alzheimers Dis. 2010;20(1):293–300.
  • Gallart-Palau X, Lee BS, Adav SS, et al. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer’s disease with cerebrovascular disease. Mol Brain. 2016;9(1):1–15.
  • Alfadhel M, Nashabat M, Ali QA, et al. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease. Neurosciences. 2017;22(1):4.
  • Wang X, Li M, Peng L, et al. SOD2 promotes the expression of ABCC2 through lncRNA CLCA3p and improves the detoxification capability of liver cells. Toxicol Lett. 2020;327:9–18.
  • Dhamad AE, Greene E, Sales M, et al. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol. 2020;318(2):C289–C303.
  • Lalaouna D, Baude J, Wu Z, et al. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res. 2019;47(18):9871–9887.
  • Weidling I, Swerdlow RH. Mitochondrial dysfunction and stress responses in alzheimer’s disease. Biology (Basel). 2019;8(2):39.
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–1951.
  • Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–D551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.