84
Views
1
CrossRef citations to date
0
Altmetric
Review

Proteomic biomarkers in short bowel syndrome : are we ready to use them in clinical activity?

, &
Pages 285-293 | Received 07 Mar 2021, Accepted 27 Apr 2021, Published online: 16 May 2021

References

  • U.S. Department of Health and Human Services - National Cancer Institute at the National Institutes of Health (NIH). Available from: http://www.cancer.gov/Publications/NCIDictionaries
  • Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med. 2014;3(1):7.
  • Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Prac Oncol. 2008;3(10):588–599.
  • Frantzi M, Makridakis M, Vlahou A. Biomarkers for bladder cancer aggressiveness. Curr Opin Urol. 2012;3(5):390–396.
  • Fertig EJ, Slebos R, Chung CH. Application of genomic and proteomic technologies in biomarker discovery. Am Soc Clin Oncol Educ Book/ASCO Am Soc Clin Oncol Meet. 2012;3(32):377–382.
  • Gupta S, Venkatesh A, Ray S, et al. Challenges and prospects for biomarker research: a current perspective from the developing world. Biochim Biophys Acta. 2014;1844(5):899–908.
  • Thompson JS, Rochling FA, Weseman RA, et al. Current management of short bowel syndrome. Curr Probl Surg. 2012;49:52–115.
  • Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016;30(2):145–159.
  • O’Keefe SJ, Buchman AL, Fishbein TM, et al. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4(1):6–10.
  • Wilmore DW, Dudrick SJ. Growth and development of an infant receiving all nutrients exclusively by vein. JAMA. 1968;203(10):860–864.
  • Scribner BH, Cole JJ, Christopher TG, et al. Long-term total parenteral nutrition. The concept of an artificial gut. JAMA. 1970;212(3):457–463.
  • Dudrick SJ, O’Donnell JJ, Englert DM, et al. 100 patient-years of ambulatory home total parenteral nutrition. Ann Surg. 1984;199(6):770–781.
  • Stephens AN, Pereira-Fantini PM, Wilson G, et al. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection. J Proteome Res. 2010;9(3):1437–1449.
  • Thompson JS. Comparison of massive vs repeated resection leading to short bowel syndrome. J Gastrointest Surg. 2000;4(1):101–104.
  • Messing B, Crenn P, Beau P, et al. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117(5):1043–1050.
  • Thompson JS, Langnas AN, Pinch LW, et al. Surgical approach to short bowel syndrome. experience in a population of 160 patients. Ann Surg. 1995;222(4):600–605.
  • Thompson JS, Di Baise JK, Iyer KR, et al. Postoperative short bowel syndrome following bariatric surgical procedures. Am J Surg. 2006;192(6):828–832.
  • Thompson JS, Lynch TS. Acute mesenteric arterial ischemia. In: Schein M, Wise L, editors. Critical Controversies in Surgery. New York: Springer; 2001. p. 167–174.
  • Lauro A, Lacaille F. Short bowel syndrome in children and adults: from rehabilitation to transplantation. Expert Rev Gastroenterol Hepatol. 2019;13(1):55–70.
  • Howard L, Ament M, Cr F, et al. Current use and clinical outcome of home and parenteral and enteral nutrition therapies in the united states. Gastroenterology. 1995;109(2):355–365.
  • Abu-Elmagd KM, Costa G, Bond GJ, et al. Five hundred intestinal and multivisceral transplantation at a single center: major advances with new challenges. Ann Surg. 2009;250(4):567–581.
  • Mazariegos GV, Steffick DE, Horslen S, et al. Intestine transplantation in the united states, 1999-2008. Am J Transplant. 2010;10(4p2):1020–1034.
  • Pironi L, Sasdelli AS. New insights into the indications for intestinal transplantation. Curr Opin Organ Transplant. 2021;26:186-191.
  • Sudan D. Cost and quality of life after intestinal transplantation. Gastroenterology. 2006;130(2):158–162.
  • Sid O, Emerling M, Kovitsky D, et al. Nutrition and quality of life following small intestinal transplantation. Am J Gastroenterol. 2007;102(5):1093–1100.
  • Sudan D. Long-term outcomes and quality of life after intestine transplantation. Curr Opin Organ Transplant. 2010;15(3):357–360.
  • Kaufman SS, Aviztur Y, Beath SV, et al. New insights into the indications for intestinal transplantation: consensus in the Year 2019. Transplantation. 2020;104(5): 937–946.
  • Lauro A, Marino IR, Iyer KR. Pre-emptive intestinal transplant: the surgeon’s point of view. Dig Dis Sci. 2017;62(11):2966–2976.
  • Gupte GL, Beath SV. Update on intestinal rehabilitation after intestinal transplantation. Curr Opin Organ Transplant. 2009;14(3):267–273.
  • Gross TG, Hinrichs SH, Winner J, et al. Treatment of post-transplant lymphoproliferative disease (PTLD) following solid organ transplantation with-low dose chemotherapy. Ann Oncol. 1998;9(3):339–340.
  • Grant W, Botha JF, Sudan DL, et al. Improved survival after intestinal transplantation with lower immunosuppression. IX international small bowel transplantation symposium.Belgium: Brussels; 2005 June 30.
  • Chandra R, Kesavan A. Current treatment paradigms in pediatric short bowel syndrome. Clin J Gastroenterol. 2018;11(2):103–112.
  • Courtney CM, Warner BW. Pediatric intestinal failure-associated liver disease. Curr Opin Pediatr. 2017;29(3):363–370.
  • Boluda ER. Pediatric small bowel transplantation. Curr Opin Organ Transplant. 2015;20(5):550–560.
  • Grant W, Langnas AN. Pediatric small bowel transplantation: techniques and outcomes. Curr Opin Organ Transplant. 2002;7(2):202–207.
  • Thompson JS. Strategies for preservation of intestinal length in the short-bowel syndrome. Dis Colon Rectum. 1987;30(3):208–213.
  • Wilmore DW, Byrne TA, Persinger RL. Short bowel syndrome: new therapeutic approaches. Curr Probl Surg. 1997;34(5):389–444.
  • Jeppesen PB. Clinical significante of GLP-2 in short-bowel syndrome. J Nutr. 2003;133(11):3721–3724.
  • Thompson JS. Intestinal adaptation: nutritional and metabolic implications. In: Latifi R, Dudrick SJ, editors. Current Surgical Nutrition. Austin, TX: Lanes, R.G.; 1996. p. 147.
  • Quigley EM, Thompson JS. The motor response to intestinal resection: motor activity in the canine small intestine following distal resection. Gastroenterology. 1993;105(3):791–798.
  • Schmidt T, Pfeiffer A, Hackelsberger N, et al. Effect of intestinal resection on human small bowel motility. Gut. 1996;38(6):859–863.
  • Cosnes J, Carbonnel F, Beaugerie L, et al. Functional adaptation after extensive small bowel resection in humans. Eur J Gastroenterol Hepatol. 1994;6(3):197–202.
  • Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1111–1134.
  • Nakashima Y, Masumoto K, Takada N, et al. A study of the difference in intestinal adaptation between the residual jejunum and the ileum in rats with short bowel syndrome. Fukuoka Igaku Zasshi. 2004;95(7):167–172. article in Japanese.
  • Yang H, Fan Y, Finaly R, et al. Alteration of intestinal intraepithelial lymphocytes after massive small bowel resection. J Surg Res. 2003;110(1):276–286.
  • Mogilner JG, Srugo I, Lurie M, et al. Effect of probiotics on intestinal regrowth and bacterial trans location after massive small bowel resection in a rat. J Pediatr Surg. 2007;42(8):1365–1371.
  • Ehrenfried JA, Townsend CM Jr, Thompson JC, et al. Increases in nup475 and c-jun are early molecular events that precede the adaptive hyperplastic response after small bowel resection. Ann Surg. 1995;222(1):51–56.
  • Rubin DC, Swietlicki EA, Wang JL, et al. Enterocytic gene expression in intestinal adaptation: evidence for a specific cellular response. Am J Physiol. 1996;270:143–152.
  • Swietlicki E, Iordanov H, Fritsch C, et al. Growth factor regulation of PC4/TIS7, an immediate early gene expressed during gut adaptation after resection. JPEN J Parenter Enteral Nutr. 2003;27(2):123–131.
  • Rubin DC, Levin MS. Intestinal adaptation: molecular analyses of a complex process. Gastroenterology. 1998;115(5):1291–1294.
  • Erwin CR, Falcone RA Jr, Stern LE, et al. Analysis of intestinal adaptation gene expression by cDNA expression arrays. JPEN J Parenter Enteral Nutr. 2000;24(6):311–316.
  • Jiang P, Sangild PT. Intestinal proteomics in pig models of necrotizing enterocolitis, short bowel syndrome and intrauterine growth restriction. Proteomics Clin Appl. 2014;8(9–10):700–714.
  • Venick RS. Predictors of intestinal adaptation in children. Gastroenterol Clin North Am. 2019;48(4):499–511.
  • Re Q-T, Me A, Reyen L, et al. Long-term parenteral nutrition support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr. 2004;145(2):157–163.
  • Spencer AU, Neaga A, West B, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005;242(3):403–409.
  • Wales PW, Christison-Lagay ER. Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg. 2010;19(1):3–9.
  • Struijs MC, Diamond IR, De Silva N, et al. Establishing norms for intestinal length in children. J Pediatr Surg. 2009;44(5):933–938.
  • Wilmore DW. Factors correlating with a successful outcome following extensive intestinal resection in newborn infants. J Pediatr. 1972;80(1):88–95.
  • Norsa L, Lambe C, Abi Abboud S, et al. The colon as an energy salvage organ for children with short bowel syndrome. Am J Clin Nutr. 2019;109(4):1112–1118.
  • Channabasappa N, Girouard S, Nguyen V, et al. Enteral nutrition in pediatric short-bowel syndrome. Nutr Clin Pract. 2020;35(5):848–854.
  • Garrison AP, Dekaney CM, Von Allmen DC, et al. Early but not late administration of glucagone-like peptide-2 following ileo-cecal resection augments putative intestinal stem cell expansion. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):643–650.
  • Wilmore DW, Lacey JM, Soultanakis RP, et al. Factors predicting a successful outcome after pharmacologic bowel compensation. Ann Surg. 1997;226(3):288–292.
  • Jeppesen PB. The use of hormonal growth factors in the treatment of patients with short-bowel syndrome. Drugs. 2006;66(5):581–589.
  • Szkudlarek J, Jeppesen PB, Mortensen PB. Effect of high dose growth hormone with glutamine and no change in diet on intestinal absorption in short bowel patients: a randomised, double blind, crossover, placebo controlled study. Gut. 2000;47(2):199–205.
  • Scolapio JS, Camilleri M, Fleming CR, et al. Effect of growth hormone, glutamine, and diet on adaptation in short-bowel syndrome: a randomized, controlled study. Gastroenterology. 1997;113(4):1074–1081.
  • Byrne TA, Morrissey TB, Nattakom TV, et al. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. JPEN J Parenter Enteral Nutr. 1995;19(4):296–302.
  • Seguy D, Vahedi K, Kapel N, et al. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124(2):293–302.
  • Wales PW, Nasr A, De Silva N, et al. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev. 2010; (6):CD006321. 10.1002/14651858.CD006321.pub2.
  • Yazbeck R, Abbott CA, Howarth GS. The use of GLP-2 and related growth factors in intestinal diseases. Curr Opin Invest Drugs. 2010;11(4):440–446.
  • Dubé PE, Brubaker PL. Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab. 2007;293(2):460–465.
  • Rowland KJ, Brubaker PL. Life in the crypt: a role for glucagon-like peptide-2? Mol Cell Endocrinol. 2008;288(1–2):63–70.
  • Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):1–8.
  • Drucker DJ, Erlich P, Asa SL, et al. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA. 1996;93(15):7911–7916.
  • Jeppesen PB, Sanguinetti EL, Buchman A, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54(9):1224–1231.
  • Jeppesen PB, Hartmann B, Thulesen J, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120(4):806–815.
  • Jeppesen PB, Gilroy R, Pertkiewicz M, et al. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60(7):902–914.
  • Gattex FDA Approval History. Available from: https://www.drugs.com/history/gattex.html
  • Kocoshis SA, Merritt RJ, Hill S, et al. Safety and efficacy of Teduglutide in pediatric patients with intestinal failure due to short bowel syndrome: a 24-week, Phase III Study. JPEN J Parenter Enteral Nutr. 2020;44(4):621–631.
  • Ramos Boluda E, Redecillas Ferreiro S, Manrique Moral O, et al. Experience with teduglutide in pediatric short bowel syndrome: first real-life data. J Pediatr Gastroenterol Nutr. 2020;71(6):734–739.
  • Carter BA, Cohran VC, Cole CR, et al. Outcomes from 12-week, open-label, multicenter clinical trial of teduglutide in pediatric short bowel syndrome. J Pediatr. 2017;181:102–111.
  • Kunkel D, Basseri B, Low K, et al. Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol Motil. 2011;23(8):739–745.
  • Iltz JL, Baker DE, Setter SM, et al. Exenatide: an incretin mimetic for the treatment of type 2 diabetes mellitus. Clin Ther. 2006;28(5):652–665.
  • Byetta FDA Approval History. Available from: https://www.drugs.com/history/byetta.html
  • Hvistendahl M, Filtenborg Brandt C, Tribler S, et al. Effect of liraglutide treatment on jejunostomy output in patients with short bowel syndrome: an open-laber pilot study. J Parenter Enteral Nutr. 2016;42:112–121.
  • Sigalet DL, Martin GR, Butzner JD, et al. A pilot study of the use of epidermal growth factor in pediatric short bowel syndrome. J Pediatr Surg. 2005;40(5):763–768.
  • Sham J, Martin G, Meddings JB, et al. Epidermal growth factor improves nutritional outcome in a rat model of short bowel syndrome. J Pediatr Surg. 2002;37(5):765–769.
  • Filippi J, Rubio A, Lasserre V, et al. Dose-dependent beneficial effects of citrulline supplementation in short bowel syndrome in rats. Nutrition. 2021 2;85:111118.
  • Yamaguchi M, Asakawa K, Kuzume M, et al. Effects of insulin-like growth factor-1 on Short bowel syndrome without ileocecal valve in rats. Eur Surg Res. 2001;33(4):291–296.
  • Johnson WF, Di Palma CR, Ziegle TR, et al. Keratinocyte growth factor enhances early gut adaptation in a rat model of short bowel syndrome. Vet Surg. 2000;29(1):17–27.
  • Sukhotnik I, Yakirevich E, Coran AG, et al. Effect of transforming growth factor-alpha on intestinal adaptation in a rat model of short bowel syndrome. J Surg Res. 2002;108(2):235–242.
  • Sukhotnik I, Vadasz Z, Coran AG, et al. Effect of leptin on intestinal re-growth following massive small bowel resection in rat. Pediatr Surg Int. 2006;22(1):9–15.
  • Pereira PM, Bines JE. New growth factor therapies aimed at improving intestinal adaptation in short bowel syndrome. J Gastroenterol Hepatol. 2006;21(6):932–940.
  • Washizawa N, Gu LH, Openo KP, et al. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr. 2004;28(6): 399–409.
  • Lim DW, Levesque CL, Vine DF, et al. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2017;312(4): 390–404.
  • Crenn P, Vahedi K, Lavergne-Slove A, et al. Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology. 2003;124(5):1210–1219.
  • Papadia C, Sherwood RA, Kalantzis C, et al. Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol. 2007;102(7):1474–1482.
  • Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. United European Gastroenterol J. 2018;6(2):181–191.
  • Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008;27(3):328–339.
  • Bailly-Botuha C, Colomb V, Thioulouse E, et al. Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res. 2009;65(5):559–563.
  • Rhoads JM, Plunkett E, Galanko J, et al. Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr. 2005;146(4):542–547.
  • Fitzgibbons S, Ching YA, Valim C, et al. Relationship between serum citrulline levels and progression to parenteral nutrition independence in children with short bolwe syndrome. J Pediatr Surg. 2009;44(5):928–932.
  • Pironi L, Arends J, Bozzetti F, et al. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr. 2016;35:247–307.
  • Jeppesen PB, Gabe SM, Seidner DL, et al. Citrulline correlations in short bowel syndrome-intestinal failure by patient stratification: analysis of 24 weeks of teduglutide treatment from a randomized controlled study. Clin Nutr. 2020;39(8):2479–2486.
  • NIH U.S. National Library of Medicine: clinical Trial – study of Teduglutide Effectiveness in Parenteral Nutrition (PN)-Dependent Short Bowel Syndrome (SBS) Subjects (STEPS) Available from: https://clinicaltrials.gov/ct2/show/NCT00798967
  • Yaker S, Leroith D, Brodt P. The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models. Cytokine Growth Factor Rev. 2005;16(4–5):407–420.
  • Cabanas P, Garcia-Caballero T, Barreiro J, et al. Papillary thyroid carcinoma after recombinant GH therapy for Turner syndrome. Eur J Endocrinol. 2005;153(4):499–502.
  • Gallego R, Pintos E, Garcia-Caballero T, et al. Cellular distribution of growth hormone – releasing hormone receptor in human reproductive system and breast and prostate cancer. Histol Histopathol. 2005;20(3):697–706.
  • Kato S, Pinto M, Carvajal A, et al. Tissue factor is regulated by epidermal growth factor in normal and malignant human endometrial epithelial cells. Thromb Haemost. 2005;94(2):444–453.
  • Festuccia C, Angelucci A, Gravina GL, et al. Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF – receptor inhibition may prevent tumor cell dissemination. Thromb Hemost. 2005;93(5):964–975.
  • Price DJ, Avraham S, Jiang S, et al. Role of the aging vasculature and Erb B-2 signaling in epidermal growth factor dependent intravasion of breast carcinoma cells. Cancer. 2004;101(1):198–205.
  • Zhang H, Ma G, Dong M, et al. Epidermal growth factor promotes invasiveness of pancreatic cancer cells through NF-kappaB-mediated proteinase productions. Pancreas. 2006;32(1):109.
  • Parekh NR, Steiger E. Criteria for the use of recombinant human growth hormone in short bowel syndrome. Nutr Clin Pract. 2005;20(5):503–508.
  • Pape UF, Iyer KR, Jeppesen PB, et al. Teduglutide for the treatment of adults with intestinal failure associated with short bowel syndrome: pooled safety data from four clinical trials. Therap Adv Gastroenterol. 2020;13:1756284820905766.
  • Seidner DL, Gabe SM, Lee HM, et al. Enteral autonomy and days off parenteral support with teduglutide treatment for short bowel syndrome in the STEPS Trials. JPEN J Parenter Enteral Nutr. 2020;44(4):697–702.
  • Chen K, Mu F, Xie J, et al. Impact of teduglutide on quality of life among patients with short bowel syndrome and intestinal failure. JPEN J Parenter Enteral Nutr. 2020;44(1):119–128.
  • Chen KS, Xie J, Tang W, et al. Identifying a subpopulation with higher likelihoods of early response to treatment in a heterogeneous rare disease: a post hoc study of response to teduglutide for short bowel syndrome. Ther Clin Risk Manag. 2018;14:1267–1277.
  • Jeppesen PB, Gabe SM, Seidner DL, et al. Factors associated with response to teduglutide in patients with short-bowel syndrome and intestinal failure. Gastroenterology. 2018;154(4):874–885.
  • Iyer KR, Kunecki M, Boullata JI, et al. Independence from parenteral nutrition and intravenous fluid support during treatment with teduglutide among patients with intestinal failure associated with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):946–951.
  • Schwartz LK, O’Keefe SJ, Fujioka K, et al. Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol. 2016;7(2):e142.
  • Solar H, Doeyo M, Ortega M, et al. Postsurgical Intestinal Rehabilitation Using Semisynthetic Glucagon-Like Peptide-2 Analogue (sGLP-2) at a Referral Center: can Patients Achieve Parenteral Nutrition and sGLP-2 Independency? JPEN J Parenter Enteral Nutr. 2020 Aug 2; Online ahead of print. 10.1002/jpen.1983.
  • Cruz RJ Jr, McGurgan J, Butera L, et al. Gastrointestinal Tract Reconstruction in Adults with Ultra-Short Bowel Syndrome: surgical and Nutritional Outcomes. Surgery. 2020;168(2):297–304.
  • Gondolesi GE, Doeyo M, Echevarria Lic C, et al. Results of surgical and medical rehabilitation for adult patients with type III intestinal failure in a comprehensive unit today: building a new model to predict parenteral nutrition independency. JPEN J Parenter Enteral Nutr. 2020;44(4):703–713.
  • Madsen KB, Askov-Hansen C, Naimi RM, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept. 2013;184:30–39.
  • Lim DW, Wales PW, Turner JM, et al. On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opin Ther Targets. 2016;20(7):819–830.
  • McMellen ME, Wakeman D, Longshore SW, et al. Growth factors: possible roles for clinical management of theshort bowel syndrome. Semin Pediatr Surg. 2010;19(1):35–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.