1,314
Views
5
CrossRef citations to date
0
Altmetric
Review

Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells

&
Pages 661-674 | Received 03 Aug 2021, Accepted 31 Aug 2021, Published online: 16 Sep 2021

References

  • Humphrey SJ, James DE, Mann M. Protein Phosphorylation: a Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab. 2015;26(12):676–687.
  • Fuhs SR, Hunter T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol. 2017;45:8–16.
  • Fuhs SR, Meisenhelder J, Aslanian A, et al. Monoclonal 1- and 3-Phosphohistidine Antibodies: new Tools to Study Histidine Phosphorylation. Cell. 2015;162(1):198–210.
  • Schmelzle K, White FM. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol. 2006;17(4):406–414.
  • Tsuji S, Ohno Y, Nakamura S, et al. Temozolomide has anti-tumor effects through the phosphorylation of cPLA2 on glioblastoma cells. Brain Res. 2019;1723:146396.
  • Mao L, Zhan Y, Wu B, et al. ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nat Commun. 2020;11(1):117.
  • Xiao M, Xie J, Wu Y, et al. The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Commun Signal. 2020;18(1):25.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Ardito F, Giuliani M, Perrone D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. 2017;40(2):271–280.
  • Ficarro SB, McCleland M, Stukenberg PT, et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20(3): 301–305.
  • Carter AM, Tan C, Pozo K, et al. Phosphoprotein-based biomarkers as predictors for cancer therapy. Proc Natl Acad Sci USA. 2020;117(31):18401–18411.
  • Bekker-Jensen DB, Bernhardt OM, Hogrebe A, et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun. 2020;11(1):787.
  • Sevecka M, MacBeath G. State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods. 2006;3(10):825–831.
  • Krutzik PO, Crane JM, Clutter MR, et al., High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol. 2008;4(2): 132–142.
  • Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA. 1980;77(3):1311–1315.
  • Raffel S, Klimmeck D, Falcone M, et al. Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood. 2020;136(13):1507–1519.
  • Nelson ME, Parker BL, Burchfield JG, et al. Phosphoproteomics reveals conserved exercise‐stimulated signaling and AMPK regulation of store‐operated calcium entry. EMBO J. 2019;38(24):e102578.
  • Morshed N, Ralvenius WT, Nott A, et al. Phosphoproteomics identifies microglial Siglec‐F inflammatory response during neurodegeneration. Mol Syst Biol. 2020;16(12):e9819.
  • Kubiniok P, Finicle BT, Piffaretti F, et al. Dynamic Phosphoproteomics Uncovers Signaling Pathways Modulated by Anti-oncogenic Sphingolipid Analogs. Mol Cell Proteom. 2019;18(3):408–422.
  • Hu Y, Sun L, Zhang Y, et al. Phosphoproteomics reveals key regulatory kinases and modulated pathways associated with ovarian cancer tumors. Onco Targets Ther. 2020;13:3595–3605.
  • Scheidt T, Alka O, Gonczarowska-Jorge H, et al. Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Commun Signal. 2020;18(1):99.
  • Malik N, Nirujogi RS, Peltier J, et al. Phosphoproteomics reveals that the hVPS34 regulated SGK3 kinase specifically phosphorylates endosomal proteins including Syntaxin-7, Syntaxin-12, RFIP4 and WDR44. Biochem J. 2019;476(20):3081–3107.
  • Batth TS, Papetti M, Pfeiffer A, et al. Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling. Cell Rep. 2018;22(10):2784–2796.
  • Hijazi M, Smith R, Rajeeve V, et al. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nat Biotechnol. 2020;38(4):493–502.
  • van Alphen C, Cloos J, Beekhof R, et al. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines. Mol Cell Proteom. 2020;19(5):884–899.
  • Kohale IN, Burgenske DM, Mladek AC, et al. Quantitative Analysis of Tyrosine Phosphorylation from FFPE Tissues Reveals Patient-Specific Signaling Networks. Cancer Res. 2021;81(14):3930–3941.
  • Stopfer LE, Flower CT, Gajadhar AS, et al., High-density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumors. Cancer Res. 2021;81(9): 2495–2509.
  • Tuncbag N, Milani P, Pokorny JL, et al. Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Sci Rep. 2016;6:28668.
  • Ludwig KR, Schroll MM, Hummon AB. Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up Proteomic Studies. J Proteome Res. 2018;17(7):2480–2490.
  • Hailemariam M, Eguez RV, Singh H, et al. S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics. J Proteome Res. 2018;17(9):2917–2924.
  • Bubis JA, Gorshkov V, Gorshkov MV, et al. PhosphoShield: improving Trypsin Digestion of Phosphoproteins by Shielding the Negatively Charged Phosphate Moiety. J Am Soc Mass Spectrom. 2020;31(10):2053–2060.
  • Lundby A, Franciosa G, Emdal KB, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179(2):543–560.e26.
  • Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc. 2016;11(5):993–1006.
  • van der Laarse SAM, van Gelder CAGH, Bern M, et al. Targeting proline in (phospho)proteomics. FEBS J. 2020;287(14):2979–2997.
  • Pankow S, Bamberger C, Yates JR. A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal. 2019;12(562):eaan7984.
  • Gao X, Li Q, Liu Y, et al. Multi-in-One: multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation. Anal Chem. 2020;92(13):8943–8951.
  • Humphrey SJ, Karayel O, James DE, et al., High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat Protoc. 2018;13(9): 1897–1916.
  • Gao Y, Ha YS, Kwon TG, et al. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genom Proteom. 2020;17(5):543–553.
  • Cm P, MH L, AJR H, et al. Defeating Major Contaminants in Fe 3+- Immobilized Metal Ion Affinity Chromatography (IMAC) Phosphopeptide Enrichment. Mol Cell Proteom. 2018;17(5):1028–1034.
  • Bodenmiller B, Mueller LN, Mueller M, et al. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods. 2007;4(3):231–237.
  • Ruprecht B, Koch H, Medard G, et al. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteom. 2015;14(1):205–215.
  • Yeh T, Ho M, Chen W, et al. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Anal Bioanal. Chem. 2019;411(15):3417–3424.
  • Olsen JV, Blagoy B, Gnad F, et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3): 635–648.
  • Wang LB, Karpova A, Gritsenko MA, et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39(4):509–528.e20.
  • Clark DJ, Dhanasekaran SM, Petralia F, et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell. 2019;179:964–983.e31.
  • Pawson T. Protein modules and signalling networks. Nature. 1995;373(6515):573–580.
  • Pawson T, Hunter T. Signal transduction and growth control in normal and cancer cells. Current Opin Genet Dev. 1994;4(1):1–4
  • Rozakis-Adcock M, Fernley R, Wade J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363(6424):83–85.
  • Zhang Y, Wolf-Yadlin A, Ross PL, et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteom. 2005;4(9):1240–1250.
  • Rush J, Moritz A, Lee KA, et al., Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005;23(1): 94–101.
  • Blagoy B, Ong SE, Kratchmarova I, et al. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol. 2004;22(9):1139–1145.
  • Reddy R, Curran TG, Zhang Y, et al. Measurement of Phosphorylated Peptides with Absolute Quantification. Methods Mol Biol. 2016;1410:281–292.
  • Zhang Y, Wolf-Yadlin A, White FM. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks. Methods Mol Biol. 2007;359:203–212.
  • Pawson T. SH2 and SH3 domains in signal transduction. Adv Cancer Res. 1994;64:87–110.
  • Bian Y, Li L, Dong M, et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol. 2016;12(11):959–966.
  • Tong J, Cao B, Martyn G, et al. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS. Proteomics. 2017;17(6).
  • Li S, Zou Y, Zhao D, et al. Revisiting the phosphotyrosine binding pocket of Fyn SH2 domain led to the identification of novel SH2 superbinders. Protein Sci. 2021;30(3):558–570.
  • Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–1166.
  • Stokes MP, Rush J, MacNeill J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA. 2007;104(50):19855–19860.
  • Carlson SM, Chouinard CR, Labadorf A, et al. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 2011;4(196).
  • Mertins P, Qiao J, Patel J, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods. 2013;10(7):634–637.
  • Hogrebe A, von Stechow L, Bekker-Jensen DB, et al. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat Commun. 2018;9(1):1045.
  • Stepath M, Zulch B, Maghnouj A, et al. Systematic Comparison of Label-Free, SILAC, and TMT Techniques to Study Early Adaption toward Inhibition of EGFR Signaling in the Colorectal Cancer Cell Line DiFi. J Proteome Res. 2020;19(2):926–937.
  • Ong SE, Blagoev B, Kratchmarova I, et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom. 2002;1(5): 376–386.
  • Westman-Bringmalm A, Abramsson A, Pannee J, et al. SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration. J Proteomics. 2011;75(2):425–434.
  • Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell. 2008;134(2):353–364.
  • Altelaar A, Frese C, Preisinger C, et al. Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics. 2013;88:14–26.
  • Osinalde N, Moss H, Arrizabalaga O, et al. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics. 2011;75(1):177–191.
  • Hammond DE, Hyde R, Kratchmarova I, et al. Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks. J Proteome Res. 2010;9(5):2734–2742.
  • Zhang G, Neubert TA. Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol Biol. 2009;527:79-92, xi.
  • Dengjel J, Aimov V, Olsen JV, et al. Quantitative proteomic assessment of very early cellular signaling events. Nat Biotechnol. 2007;25(5):566–568.
  • Zhang X, Maity T, Kashyap MK, et al. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response. Mol Cell Proteom. 2017;16(5):891–910.
  • Cunningham DL, Sarhan AR, Creese AJ, et al. Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Sci Rep. 2020;10(1):7950.
  • PJ B, LY F, Vmy D, et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteom. 2010;9(1):84–99.
  • Polat AN, Kraiczek K, Heck AJR, et al. Fully automated isotopic dimethyl labeling and phosphopeptide enrichment using a microfluidic HPLC phosphochip. Anal Bioanal Chem. 2012;404(8):2507–2512.
  • Ross PL, Huang YN, Marchese JN, et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteom. 2004;3(12): 1154–1169.
  • Thompson A, Schafer J, Kuhn K, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–1904.
  • Li J, Cai Z, Bomgarden RD, et al. TMTpro-18plex: the Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing. J Proteome Res. 2021;20(5):2964–2972.
  • Stopfer LE, Conage-Pough JE, White FM. Quantitative Consequences of Protein Carriers in Immunopeptidomics and Tyrosine Phosphorylation MS 2 Analyses. Mol Cell Proteom. 2021;20:100104.
  • McAlister GC, Nusinow DP, Jedrychowski MP, et al., MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014;86(14): 7150–7158.
  • Schmelzle K, Kane S, Gridley S, et al. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes. 2006;55(8):2171–2179.
  • Reddy RJ, Gajadhar AS, Swenson EJ, et al., Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci USA. 2016;113(11): 3114–3119.
  • Randall EC, Emdal KB, Laramy JK, et al. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun. 2018;9(1):4904.
  • Shen L, Li Z, Shen L. Quantitative Tyrosine Phosphoproteomic Analysis of Resistance to Radiotherapy in Nasopharyngeal Carcinoma Cells. Cancer Manag Res. 2020;12:12667–12678.
  • Donnelly DP, Rawlins CM, DeHart CJ, et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods. 2019;16(7):587–594.
  • Sidoli S, Garcia BA. Middle-down proteomics: a still unexploited resource for chromatin biology. Expert Rev Proteom. 2017;14(7):617–626.
  • Zhen Y, Huang X, Kelleher NL. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol. 2016;33:142–150.
  • Lu C, Coradin M, Porter EG, et al. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry-Based Approaches. Mol Cell Proteom. 2020;20:100006.
  • Roberts DS, Chen B, Tiambeng TN, et al. Reproducible Large-Scale Synthesis of Surface Silanized Nanoparticles as an Enabling Nanoproteomics Platform: enrichment of the Human Heart Phosphoproteome. Nano Res. 2019;12(6):1473–1481.
  • Chen B, Hwang L, Ochowicz W, et al. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem Sci. 2017;8(6):4306–4311.
  • Riley NM, Hebert AS, Durnberger G, et al. Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Anal Chem. 2017;89(12):6367–6376.
  • Wu S, Yang F, Zhao R, et al. Integrated workflow for characterizing intact phosphoproteins from complex mixtures. Anal Chem. 2009;81(11):4210–4219.
  • White FM, Wolf-Yadlin A. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks. Annu Rev Anal Chem (Palo Alto, Calif). 2016;9(1):295–315.
  • Sharma K, RCJ D, Tyanova S, et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014;8(5):1583–1594.
  • Batth TS, Olsen JV. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage. Methods Mol Biol. 2016;1355:179–192.
  • Kumar N, Wolf-Yadlin A, White FM, et al. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput Biol. 2007;3(1):0035–0048.
  • Wolf-Yadlin A, Kumar N, Zhang Y, et al. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol. 2006;2(1):54.
  • Kitata RB, Choong W-K, Tsai C-F, et al. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Nat Commun. 2021 Janu 12;12(1):1–14.
  • Gao E, Li W, Wu C, et al. Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes. Mol Omics. 2021;17(3):413–425.
  • Hu Y, Wang M, Ren S, et al. Quantitative proteomics and phosphoproteomic analyses of mouse livers after tick-borne Babesia microti infection. Int J Parasitol. 2021;51(2–3):167–182.
  • Parker BL, Yang G, Humphrey SJ, et al. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal. 2015;8(380):rs6.
  • Martinez-Val A, Bekker-Jensen DB, Hogrebe A, et al. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut. Methods Mol Biol. 2021;2361:95–107.
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, et al., Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA. 2007;104(14): 5860–5865.
  • Whiteaker JR, Zhao L, Saul R, et al. A Multiplexed Mass Spectrometry-Based Assay for Robust Quantification of Phosphosignaling in Response to DNA Damage. Radiat Res. 2018;189(5):505–518.
  • Whiteaker JR, Zhao L, Schoenherr RM, et al. Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: application to Quantification of ATM Kinase Phospho-Signaling. Methods Mol Biol. 2017;1599:197–213.
  • Gallien S, Kim SY, Domon B. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM). Mol Cell Proteom. 2015;14(6):1630–1644.
  • Curran TG, Zhang Y, Ma DJ, et al. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat Commun. 2015;6(1):5924.
  • White FM. The potential cost of high-throughput proteomics. Sci Signal. 2011;4(160):pe8.
  • Savage SR, Zhang B. Using phosphoproteomics data to understand cellular signaling: a comprehensive guide to bioinformatics resources. Clin Proteom. 2020;17(1):27
  • Emdal KB, Dittmann A, Reddy RJ, et al. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance. Mol Cancer Ther. 2017;16(11):2572–2585.
  • Naegle KM, White FM, Lauffenburger DA, et al. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol Biosyst. 2012;8(10):2771–2782.
  • Naegle KM, Welsch RE, Yaffe MB, et al. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol. 2011;7(7):e1002119.
  • Archer TC, Ehrenberger T, Mundt F, et al., Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2018;34(3): 396–410.e8.
  • Johnson H, White FM. Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. J Proteome Res. 2014;13(11):4581–4593.
  • Linding R, Jensen LJ, Ostheimer GJ, et al. Systematic discovery of in vivo phosphorylation networks. Cell. 2007;129(7):1415–1426.
  • Kuleshov MV, Xie Z, London ABK, et al. KEA3: improved kinase enrichment analysis via data integration. Nucleic Acids Res. 2021;49(W1):W304-W316.
  • Strasser SD, Ghazi PC, Starchenko A, et al. Substrate-based kinase activity inference identifies MK2 as driver of colitis. Integr Biol(Camb). 2019;11. 301–314.
  • Krug K, Mertins P, Zhang B, et al. A Curated Resource for Phosphosite-specific Signature Analysis. Mol Cell Proteom. 2019;18(3):576–593.
  • Storey AJ, Naceanceno KS, Lan RS, et al. ProteoViz: a tool for the analysis and interactive visualization of phosphoproteomics data. Mol Omics. 2020;16(4):316–326.
  • Pedersen AK, Pfeiffer A, Karemore G, et al. Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience. 2021;24(4):102321.
  • Wirbel J, Cutillas P, Saez-Rodriguez J. Phosphoproteomics-based profiling of kinase activities in cancer cells. Methods Mol Biol. 2018;1711:103-132.
  • Searle BC, Lawrence RT, MacCoss MJ, et al. Thesaurus: quantifying phosphopeptide positional isomers. Nat Methods. 2019;16(8):703–706.
  • Krug K, Jaehnig EJ, Satpathy S, et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell. 2020;183(5). https://doi.org/10.1016/j.cell.2020.10.036.
  • Vasaikar S, Huang C, Wang X, et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell. 2019;177(4):1035–1049.e19.
  • Pa S, Ea W, RJC S, et al. Proteogenomic landscape of squamous cell lung cancer. Nat Commun. 2019;10(1):3578.
  • Kedaigle A, Fraenkel E. Turning omics data into therapeutic insights. Curr Opin Pharmacol. 2018;42:95–101.
  • Soltis AR, Kennedy NJ, Xin X, et al. Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep. 2017;21(11):3317–3328.
  • Pirhaji L, Milani P, Leidl M, et al. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods. 2016;13(9):770–776.
  • Huang PH, Miraldi ER, Xu AM, et al. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. Mol Biosyst. 2010;6(7):1227–1237.
  • Frejno M, Meng C, Ruprecht B, et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat Commun. 2020 Janu 11;11(1):1–12.
  • Patel-Murray NL, Adam M, Huynh N, et al. A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules. Sci Rep. 2020;10(1):1–14.
  • Wang S, Li W, Hu L, et al. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res. 2020;48(14):e83–e83.
  • Bijnsdorp IV, Schelfhorst T, Luinenburg M, et al. Feasibility of phosphoproteomics to uncover oncogenic signalling in secreted extracellular vesicles using glioblastoma-EGFRVIII cells as a model. J Proteomics. 2021;232:104076.
  • Murilo JR, Kuras M, Rezeli M, et al. Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue. PloS One. 2018;13(12):e0208562.
  • Coscia F, Doll S, Bech JM, et al. A streamlined mass spectrometry–based proteomics workflow for large-scale FFPE tissue analysis. J Pathol. 2020;251(1):100–112.
  • Sanchez-Quiles V, Shi MJ, Dingli F, et al. Triple extraction method enables high quality mass spectrometry-based proteomics and phospho-proteomics for eventual multi-omics integration studies. Proteomics. 2021;21(16):2000303.
  • Liu Y, Zeng R, Wang R, et al. Spatiotemporally resolved subcellular phosphoproteomics. Proc Natl Acad Sci USA. 2021;118(25):e2025299118.
  • Jadwin JA, Oh D, Curran TG, et al. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. ELife. 2016;5:e11835.
  • Budnik B, Levy E, Harmange G, et al. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19(1):161.
  • Dou M, Clair G, Tsai CF, et al. High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Anal Chem. 2019;91(20):13119–13127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.