561
Views
3
CrossRef citations to date
0
Altmetric
Review

Peptidomics and proteogenomics: background, challenges and future needs

, , , , ORCID Icon, , & show all
Pages 643-659 | Received 23 Jun 2021, Accepted 10 Sep 2021, Published online: 24 Sep 2021

References

  • Voelkerding KV, Dames S, Durtschi JD. Next-generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. JMD. 2010;12(5):539–551.
  • Sheynkman GM, Shortreed MR, Cesnik AJ, et al. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem (Palo Alto, Calif.). 2016;9(1):521–545.
  • Dallas DC, Guerrero A, Parker EA, et al. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 2015;15(5–6):1026–1038.
  • Sasaki K, Takahashi N, Satoh M, et al. A peptidomics strategy for discovering endogenous bioactive peptides. J Proteome Res. 2010;9(10):5047–5052.
  • Jagtap PD, Johnson JE, Onsongo G, et al. Flexible and accessible workflows for improved proteogenomic analysis using the Galaxy framework. J Proteome Res. 2014;13(12):5898–5908.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Ansong C, Purvine SO, Adkins JN, et al. Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomics. 2008;7(1):50–62.
  • Omasits U, Varadarajan AR, Schmid M, et al. An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. bioRxiv. 2017;153213.
  • Willems P, Fijalkowski I, Van Damme P. Lost and found: re-searching and re-scoring proteomics data aids genome annotation and improves proteome coverage. mSystems. 2020;5(5):e00833-20.
  • Ye X, Tang X, Wang X, et al. Improving Silkworm genome annotation using a proteogenomics approach. J Proteome Res. 2019;18(8):3009–3019.
  • Dupree EJ, Crimmins BS, Holsen TM, et al. Developing well-annotated species-specific protein databases using comparative proteogenomics. Adv Exp Med Biol. 2019;1140:389–400.
  • Blank-Landeshammer B, Richard VR, Mitsa G, et al. Proteogenomics of colorectal cancer liver metastases: complementing precision oncology with phenotypic data. Cancers (Basel). 2019;11(12):1907.
  • Woo S, Cha SW, Merrihew G, et al. Proteogenomic database construction driven from large scale RNA-seq data. J Proteome Res. 2014;13(1):21–28.
  • Crameri R. The potential of proteomics and peptidomics for allergy and asthma research. Allergy. 2005;60(10):1227–1237.
  • Meyfour A, Rezaie TM, Sadeghi MR. Common proteomic technologies, applications, and their limitations. Arch Adv Biosci. 2013;4.
  • Li H, Zhou R. Improving gene annotation of the peanut genome by integrated proteogenomics workflow. J Proteome Res. 2020;19(6):2226–2235.
  • **Marcus K, Lelong C, Rabilloud T. What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes. 2020;8(3):17.
  • Gedela S, Medicherla NR. Chromatographic techniques for the separation of peptides: application to proteomics. Chromatographia. 2007;65(9):511–518.
  • Medhe S. Ionization techniques in mass spectrometry: a review. Mass Spectrom Purif Tech. 2018;4(1). DOI:https://doi.org/10.4172/2469-9861.1000126
  • Schrader M. Origins, technological development, and applications of peptidomics. Methods Mol Biol. 2018;1719:3–39.
  • Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–490. DOI:https://doi.org/10.1016/j.cbpa.2008.07.024.
  • Rolland DCM, Lim MS, Elenitoba-Johnson KSJ. Mass spectrometry and proteomics in hematology. Semin Hematol. 2019;56(1):52–57.
  • Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci. 2019;42(1):398–414.
  • Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–490. DOI:https://doi.org/10.1016/j.cbpa.2008.07.024.
  • Zhang X, Fang A, Riley CP, et al. Multi-dimensional liquid chromatography in proteomics–a review. Anal Chim Acta. 2010;664(2):101–113.
  • Datta KK, Madugundu AK, Gowda H. Proteogenomic methods to improve genome annotation. Methods Mol Biol. 2016;1410:77–89.
  • Müller SA, Kohajda T, Findeiss S, et al. Optimization of parameters for coverage of low molecular weight proteins. Anal Bioanal Chem. 2010;398(7–8):2867–2881.
  • Ma J, Diedrich JK, Jungreis I, et al. Improved identification and analysis of small open reading frame encoded polypeptides. Anal Chem. 2016;88(7):3967–3975.
  • Anders J, Petruschke H, Jehmlich N, et al. A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations. BMC Bioinformatics. 2021;22(1):277.
  • Koenig T, Menze BH, Kirchner M, et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708–3717.
  • Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics. 2013;13(1):22–24.
  • Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun. 2014;5(1):5277.
  • Sheynkman GM, Shortreed MR, Cesnik AJ, et al. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Ann Rev Anal Chem. 2016;9(1):521–545.
  • Fuchs S, Kucklick M, Lehmann E, et al. A proteogenomics workflow to uncover the world of small proteins in Staphylococcus aureus. bioRxiv. 2020. 2020.2005.2025.114132.
  • Choudhary JS, Blackstock WP, Creasy DM, et al. Matching peptide mass spectra to EST and genomic DNA databases. Trends Biotechnol. 2001;19:17–22.
  • Schrader M, Schulz-Knappe P, Fricker LD. Historical perspective of peptidomics. EuPA Open Proteom. 2014;3:171–182.
  • Chen C, Huang H, Wu CH. Protein bioinformatics databases and resources. Methods Mol Biol. 2017;1558:3–39.
  • Deutsch EW, Lam H, Aebersold R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008;9(5):429–434.
  • Deutsch EW, Bandeira N, Sharma V, et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2019;48(D1):D1145–D1152.
  • **Bandeira N, Deutsch EW, Kohlbacher O, et al. Data management of sensitive human proteomics data: current practices, recommendations, and perspectives for the future. Mol Cell Proteomics. 2021;20:100071.
  • Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–d954.
  • Galperin MY, Koonin EV. From complete genome sequence to ‘complete’ understanding? Trends Biotechnol. 2010;28(8):398–406.
  • Castellana N, Bafna V. Proteogenomics to discover the full coding content of genomes: a computational perspective. J Proteomics. 2010;73(11):2124–2135.
  • Zickmann F, Renard BY. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics. 2015;31(12):i106–115. DOI:https://doi.org/10.1093/bioinformatics/btv236.
  • Wang Z, Chen Y, Li Y, et al. Review of computational gene prediction methods. Genomics Proteomics Bioinformatics. 2004;2(4):216–221.
  • Jongeneel CV. Searching the expressed sequence tag (EST) databases: panning for genes. Brief Bioinform. 2000;1(1):76–92.
  • Picoult-Newberg L, Ideker TE, Pohl MG, et al. Mining SNPs from EST databases. Genome Res. 1999;9(2):167–174.
  • Pashley CH, Ellis JR, McCauley DE, et al. EST databases as a source for molecular markers: lessons from Helianthus. J Hered. 2006;97(4):381–388.
  • Anithakumari AM, Tang J, Van Eck HJ, et al. A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed. 2010;26(1):65–75.
  • Bens M, Sahm A, Groth M, et al. FRAMA: from RNA-seq data to annotated mRNA assemblies. BMC Genomics. 2016;17(1):54.
  • Alam T, Uludag M, Essack M, et al. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res. 2017;45(5):2838–2848.
  • Zhao S, Zhang B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics. 2015;16(1):97.
  • Castellana NE, Shen Z, He Y, et al. An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol Cell Proteomics. 2014;13(1):157–167.
  • Choi S, Kim H, Paek E. ACTG: novel peptide mapping onto gene models. Bioinformatics. 2017;33(8):1218–1220.
  • Schlaffner CN, Pirklbauer G, Bender A, et al. PoGo: jumping from peptides to genomic loci. bioRxiv. 2016;079772.
  • Wang P, Wilson SR. Mass spectrometry-based protein identification by integrating de novo sequencing with database searching. BMC Bioinformatics. 2013;14(Suppl2):S24.
  • Tanner S, Shen Z, Ng J, et al. Improving gene annotation using peptide mass spectrometry. Genome Res. 2007;17(2):231–239.
  • Leonelli S. The challenges of big data biology. eLife. 2019;8. DOI:https://doi.org/10.7554/eLife.47381
  • Li Y, Chen L. Big biological data: challenges and opportunities. Genomics Proteomics Bioinformatics. 2014;12(5):187–189.
  • Krassowski M, Paczkowska M, Cullion K, et al. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Res. 2018;46(D1):D901–d910.
  • Nagaraj SH, Waddell N, Madugundu AK, et al. PGTools: a software suite for proteogenomic data analysis and visualization. J Proteome Res. 2015;14(5):2255–2266.
  • Kolmogorov M, Liu X, Pevzner PA. SpectroGene: a tool for proteogenomic annotations using top-down spectra. J Proteome Res. 2016;15(1):144–151.
  • Cao R, Shi Y, Chen S, et al. dbSAP: single amino-acid polymorphism database for protein variation detection. Nucleic Acids Res. 2017;45(D1):D827–d832.
  • Guruceaga E, Garin-Muga A, Segura V. MiTPeptideDB: a proteogenomic resource for the discovery of novel peptides. Bioinformatics. 2020;36(1):205–211.
  • Chen MM, Li J, Wang Y, et al. TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol Cell Proteomics. 2019;18(8suppl 1):S15–s25.
  • Damle NP, Kohn M. The human DEPhOsphorylation Database DEPOD: 2019 update. Database (Oxford). 2019;baz133
  • Huang H, Arighi CN, Ross KE, et al. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 2018; 46(D1):D542–D550
  • Heazlewood JL, Durek P, Hummel J, et al. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res. 2008: D1015–21
  • Yeom J, Kabir MH, Lim B, et al. A proteogenomic approach for protein-level evidence of genomic variants in cancer cells. Sci Rep. 2016;6(1):35305.
  • Ruggles KV, Tang Z, Wang X, et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol Cell Proteomics. 2016;15(3):1060–1071.
  • Olexiouk V, Menschaert G. proBAMconvert: A Conversion Tool for proBAM/proBed. J Proteome Res. 2017; 16(7):2639–2644
  • Li Y, Wang X, Cho J-H, et al. JUMPg: an integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J Proteome Res. 2016;15(7):2309–2320.
  • Lin YY, Gawronski A, Hach F, et al. Computational identification of micro-structural variations and their proteogenomic consequences in cancer. Bioinformatics. 2018;34(10):1672–1681.
  • Kim CY, Na K, Park S, et al. FusionPro, a versatile proteogenomic tool for identification of novel fusion transcripts and their potential translation products in cancer cells. Mol Cell Proteomics. 2019;18(8):1651–1668.
  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics. 2004;4(1):59–77.
  • Guillot L, Delage L, Viari A, et al. Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes. BMC Genomics. 2019;20(1):56.
  • Anderson KJ, Vermillion KL, Jagtap P, et al. Proteogenomic analysis of a hibernating mammal indicates contribution of skeletal muscle physiology to the hibernation phenotype. J Proteome Res. 2016;15(4):1253–1261.
  • Uszkoreit J, Plohnke N, Rexroth S, et al. The bacterial proteogenomic pipeline. BMC Genomics. 2014;15(Suppl9):S19. DOI:https://doi.org/10.1186/1471-2164-15-S9-S19.
  • Komor MA, Pham TV, Hiemstra AC, et al. Identification of differentially expressed splice variants by the proteogenomic pipeline splicify. Mol Cell Proteomics. 2017;16(10):1850–1863.
  • Srivastava A, Sharpnack M, Huang K, et al. An approach to identify and explore post transcriptional regulatory mechanisms using proteogenomics. Pac Symp Biocomput. 2020;25, 475–486.
  • Park GW, Hwang H, Kim KH, et al. Integrated proteomic pipeline using multiple search engines for a proteogenomic study with a controlled protein false discovery rate. J Proteome Res. 2016;15(11):4082–4090.
  • Verbruggen S, Ndah E, Van Criekinge W, et al. PROTEOFORMER 2.0: further developments in the ribosome profiling-assisted proteogenomic hunt for new proteoforms. Mol Cell Proteomics. 2019;18(8 suppl 1):S126–s140.
  • Tariq MU, Haseeb M, Aledhari M, et al. Methods for proteogenomics data analysis, challenges, and scalability bottlenecks: a survey. IEEE Access. 2021;9:5497–5516.
  • Menschaert G, Vandekerckhove TTM, Baggerman G, et al. A hybrid, de Novo based, genome-wide database search approach applied to the Sea Urchin neuropeptidome. J Proteome Res. 2010;9(2):990–996.
  • Ferro M, Tardif M, Reguer E, et al. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. J Proteome Res. 2008;7(5):1873–1883.
  • Sheynkman GM, Johnson JE, Jagtap PD, et al. Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations. BMC Genomics. 2014;15(1):703.
  • Ghali F, Krishna R, Perkins S, et al. ProteoAnnotator–open source proteogenomics annotation software supporting PSI standards. Proteomics. 2014;14(23–24):2731–2741.
  • Zhu Y, Orre LM, Johansson HJ, et al. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun. 2018;9(1):903.
  • Brademan DR, Riley NM, Kwiecien NW, et al. Interactive peptide spectral annotator: a versatile web-based tool for proteomic applications *. Mol Cell Proteomics. 2019;18(8):S193–S201.
  • Kim H, Park H, Paek E. NextSearch: a search engine for mass spectrometry data against a compact nucleotide exon graph. J Proteome Res. 2015;14(7):2784–2791.
  • Tovchigrechko A, Venepally P, Payne SH. PGP: parallel prokaryotic proteogenomics pipeline for MPI clusters, high-throughput batch clusters and multicore workstations. Bioinformatics. 2014;30(10):1469–1470.
  • Risk BA, Spitzer WJ, Giddings MC. Peppy: proteogenomic search software. J Proteome Res. 2013;12(6):3019–3025.
  • Has C, Allmer J. PGMiner: complete proteogenomics workflow; from data acquisition to result visualization. Inf Sci. 2017;384:126–134.
  • Wen B, Xu S, Zhou R, et al. PGA: an R/Bioconductor package for identification of novel peptides using a customized database derived from RNA-Seq. BMC Bioinformatics. 2016;17(1):244.
  • Zhang J, Yang M-K, Zeng H, et al. GAPP: a proteogenomic software for genome annotation and global profiling of post-translational modifications in prokaryotes. Mol Cell Proteomics. 2016;15(11):3529–3539.
  • Zickmann F, Renard BY. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics. 2015;31(12):i106–i115. DOI:https://doi.org/10.1093/bioinformatics/btv236.
  • Uszkoreit J, Plohnke N, Rexroth S, et al. The bacterial proteogenomic pipeline. BMC Genomics. 2014;15(9):S19. DOI:https://doi.org/10.1186/1471-2164-15-S9-S19.
  • Liu W, Payne SH. Extracting pathway-level signatures from proteogenomic data in breast cancer using independent component analysis. Mol Cell Proteomics. 2019;18(8 suppl 1):S169–s182.
  • Afgan E, Baker D, Batut B, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses. Nucleic Acids Res. 2018;46(W1):W537–W544
  • Dimitrakopoulos L, Prassas I, Berns E, et al. Variant peptide detection utilizing mass spectrometry: laying the foundations for proteogenomic identification and validation. Clin Chem Lab Med. 2017;55(9):1291–1304.
  • Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007;5(2):77–85.
  • Mnatsakanyan R, Shema G, Basik M, et al. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics. 2018;15(6):515–535.
  • Xu H, Wang Y, Lin S, et al. PTMD: a database of human disease-associated post-translational modifications. Genomics Proteomics Bioinformatics. 2018;16(4):244–251.
  • Li H, Guan Y, Wren J. Machine learning empowers phosphoproteome prediction in cancers. Bioinformatics. 2020;36(3):859–864.
  • Ray I, Bhattacharya A, De RK. OCDD: an obesity and co-morbid disease database. BioData Mining. 2017;10:33.
  • Lazar IM, Karcini A, Ahuja S, et al. Proteogenomic analysis of protein sequence alterations in breast cancer cells. Sci Rep. 2019;9(1):10381.
  • Garin-Muga A, Corrales FJ, Segura V. Proteogenomic analysis of single amino acid polymorphisms in cancer research. Adv Exp Med Biol. 2016;926:93–113.
  • Satpathy S, Jaehnig EJ, Krug K, et al. Microscaled proteogenomic methods for precision oncology. Nat Commun. 2020;11(1):532.
  • Zhang M, Wang B, Xu J, et al. CanProVar 2.0: an updated database of human cancer proteome variation. J Proteome Res. 2017;16(2):421–432.
  • Ni Y, Stingo FC, Ha MJ, et al. Bayesian hierarchical varying-sparsity regression models with application to cancer proteogenomics. J Am Stat Assoc. 2019;114(525):48–60.
  • Chakraborty S, Andrieux G, Hasan AMM, et al. Harnessing the tissue and plasma lncRNA-peptidome to discover peptide-based cancer biomarkers. Sci Rep. 2019;9(1):12322.
  • Johansson HJ, Socciarelli F, Vacanti NM, et al. Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun. 2019;10(1):1600.
  • Islam T, Rahman R, Gov E, et al. Drug targeting and biomarkers in head and neck cancers: insights from systems biology analyses. OMICS. 2018;22(6):422–436.
  • Asif S, Fatima R, Krc R, et al. Comparative proteogenomic characterization of glioblastoma. CNS Oncol. 2019;8(2):Cns37.
  • Kulkarni S, Abdulla R, Jose M, et al. Omics data-driven analysis identifies laminin-integrin-mediated signaling pathway as a determinant for cell differentiation in oral squamous cell carcinoma. Indian J Pathol Microbiol. 2019;62(4):529–536.
  • Kwon OK, Ha YS, Lee JN, et al. Comparative proteome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteogenomics. Cancer Genomics Proteomics. 2019;16(4):273–286.
  • Zhu Y, Orre LM, Johansson HJ. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun. 2018;9(1):903.
  • Ma YS, Huang T, Zhong XM, et al. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol Cancer. 2018;17(1):139.
  • Liu T, Rodland KD, Smith RD. Characterization of the Ovarian Tumor Peptidome. Vitam Horm. 2018;107:515–531.
  • Shender V, Arapidi G, Butenko I, et al. Peptidome profiling dataset of ovarian cancer and non-cancer proximal fluids: ascites and blood sera. Data Brief. 2019;22:557–562.
  • Xu J, Wang X, Xu P, et al. Mass spectrometry-based peptidome profiling of human serous ovarian cancer tissues. Int J Biochem Cell Biol. 2019;107:53–61.
  • Flores-Morales A, Iglesias-Gato D. Quantitative mass spectrometry-based proteomic profiling for precision medicine in prostate cancer. Front Oncol. 2017;7:267.
  • de Oliveira TM, de Lacerda J, Leite GGF, et al. Label-free peptide quantification coupled with in silico mapping of proteases for identification of potential serum biomarkers in gastric adenocarcinoma patients. Clin Biochem. 2020;79:61–69.
  • Lin L, Zheng J, Zheng F, et al. Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. J Proteomics. 2020;215:103671.
  • Shraibman B, Barnea E, Kadosh DM, et al. Identification of tumor antigens among the HLA peptidomes of glioblastoma tumors and plasma. Mol Cell Proteomics. 2019;18(6):1255–1268.
  • Li X, Li J, Zhang B, et al. Comparative peptidome profiling reveals critical roles for peptides in the pathology of pancreatic cancer. Int J Biochem Cell Biol. 2020;120:105687.
  • Trinkle-Mulcahy L, Boulon S, Lam YW, et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol. 2008;183(2):223–239.
  • Carvalhais V, Cerveira F, Vilanova M, et al. An immunoproteomic approach for characterization of dormancy within Staphylococcus epidermidis biofilms. Mol Immunol. 2015;65(2):429–435.
  • Pitarch A, Nombela C, Gil C. Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. J Proteomics. 2016;134:144–162.
  • Freudenmann LK, Marcu A. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. Immunology. 2018;154(3):331–345.
  • Chong C, Müller M. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat Commun. 2020;11(1):1293.
  • Zhang X, Qi Y, Zhang Q, et al. Application of mass spectrometry-based MHC immunopeptidome profiling in neoantigen identification for tumor immunotherapy. Biomed Pharmacothe. 2019;120:109542.
  • Faridi P, Purcell AW. In immunopeptidomics we need a Sniper instead of a Shotgun. Proteomics. 2018;18(12):e1700464.
  • Courcelles M, Durette C, Daouda T, et al. MAPDP: a cloud-based computational platform for immunopeptidomics analyses. J Proteome Res. 2020;19(4):1873–1881.
  • Sigdel TK, Sarwal MM. The proteogenomic path towards biomarker discovery. Pediatr Transplant. 2008;12(7):737–747.
  • Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–248.
  • Jing J, Gao Y. Urine biomarkers in the early stages of diseases: current status and perspective. Discov Med. 2018;25(136):57–65.
  • Koyner JL, Vaidya VS, Bennett MR, et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol. 2010;5(12):2154–2165.
  • Olin JW, Di Narzo AF, , d’Escamard V, et al. A plasma proteogenomic signature for fibromuscular dysplasia. Cardiovasc Res. 2019;116(1):63–77.
  • Singh A, Dai DLY, Ioannou K, et al. Ensembling electrical and proteogenomics biomarkers for improved prediction of cardiac-related 3-month hospitalizations: a pilot study. Can J Cardiol. 2019;35(4):471–479.
  • Chiou SH, Lee KT. Proteomic analysis and translational perspective of hepatocellular carcinoma: identification of diagnostic protein biomarkers by an onco-proteogenomics approach. Kaohsiung J Med Sci. 2016;32(11):535–544.
  • Huang CH, Kuo CJ, Liang SS, et al. Onco-proteogenomics identifies urinary S100A9 and GRN as potential combinatorial biomarkers for early diagnosis of hepatocellular carcinoma. BBA Clin. 2015;3:205–213.
  • Di Meo A, Batruch I, Brown MD, et al. Identification of prognostic biomarkers in the urinary peptidome of the small renal mass. Am J Pathol. 2019;189(12):2366–2376.
  • Krochmal M, van Kessel KEM, Zwarthoff EC, et al. Urinary peptide panel for prognostic assessment of bladder cancer relapse. Sci Rep. 2019;9(1):7635.
  • Malamud D. Oral diagnostic testing for detecting human immunodeficiency virus-1 antibodies: a technology whose time has come. Am J Med. 1997;102(4a):9–14.
  • Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007;86(8):680–693.
  • Jou YJ, Lin CD, Lai CH, et al. Salivary zinc finger protein 510 peptide as a novel biomarker for detection of oral squamous cell carcinoma in early stages. Clin Chim Acta. 2011;412(15–16):1357–1365.
  • Segal A, Wong DT. Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Educ. 2008;12(Suppl1):22–29.
  • Amado F, Lobo MJ, Domingues P, et al. Salivary peptidomics. Expert Rev Proteomics. 2010;7(5):709–721.
  • Jia G, Tao H, Xue Y, et al. Analysis of secreted peptidome from omental adipose tissue in polycystic ovarian syndrome patients. J Cell Physiol. 2018;233(8):5885–5894.
  • Vaudel M, Barsnes H, Ræder H, et al. Using proteomics bioinformatics tools and resources in proteogenomic studies. Adv Exp Med Biol. 2016;926:65–75.
  • Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11(11):1114–1125.
  • **Menschaert G, Fenyö D. Proteogenomics from a bioinformatics angle: a growing field. Mass Spectrom Rev. 2017;36(5):584–599.
  • Maes E, Oeyen E, Boonen K, et al. The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom Rev. 2019;38(3):253–264.
  • Wang X, Slebos RJ, Wang D, et al. Protein identification using customized protein sequence databases derived from RNA-Seq data. J Proteome Res. 2012;11(2):1009–1017.
  • Wen B, Li K, Zhang Y, et al. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nat Commun. 2020;11(1): 1759-1759.
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44(D1):D733–D745.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.