126
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Positional proteomics: is the technology ready to study clinical cohorts?

, & ORCID Icon
Pages 309-318 | Received 15 May 2023, Accepted 22 Aug 2023, Published online: 25 Oct 2023

References

  • McDonald L, Robertson DH, Hurst JL, et al. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nat Methods. 2005 Dec;2(12):955–957. doi: 10.1038/nmeth811
  • Gevaert K, Goethals M, Martens L, et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nature Biotechnol. 2003 May;21(5):566–569. doi: 10.1038/nbt810
  • Lange PF, Overall CM. Protein TAILS: when termini tell tales of proteolysis and function. Curr Opin Chem Biol. 2013 Feb;17(1):73–82. doi: 10.1016/j.cbpa.2012.11.025
  • Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects. Proteomics. 2015 Jul;15(14):2385–2401. doi: 10.1002/pmic.201400619
  • Luo SY, Araya LE, Julien O. Protease substrate identification using N-terminomics. ACS Chem Biol. 2019 Nov 15;14(11):2361–2371. doi: 10.1021/acschembio.9b00398
  • Klein T, Eckhard U, Dufour A, et al. Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification. Chem Rev. 2018 Feb 14;118(3):1137–1168. doi: 10.1021/acs.chemrev.7b00120
  • Klein T, Fung SY, Renner F, et al. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-kappaB signalling. Nat Commun. 2015;6:8777. doi: 10.1038/ncomms9777
  • Demir F, Troldborg A, Thiel S, et al. Proteolysis and inflammation of the kidney glomerulus. Cell Tissue Res. 2021 Aug;385(2):489–500. doi: 10.1007/s00441-021-03433-8
  • Wozniak J, Floege J, Ostendorf T, et al. Key metalloproteinase-mediated pathways in the kidney. Nat Rev Nephrol. 2021 Aug;17(8):513–527. doi: 10.1038/s41581-021-00415-5
  • Rinschen MM, Huesgen PF, Koch RE. The podocyte protease web: uncovering the gatekeepers of glomerular disease. Am J Physiol Renal Physiol. 2018 Sep 19;315(6):F1812–F1816. doi: 10.1152/ajprenal.00380.2018
  • Liu C-L, Guo J, Zhang X, et al. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol. 2018 Jun 01;15(6):351–370. doi: 10.1038/s41569-018-0002-3
  • Oikonomopoulou K, Diamandis EP, Hollenberg MD, et al. Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol. 2018 Mar 01;14(3):170–180. doi: 10.1038/nrrheum.2018.17
  • McDade E, Voytyuk I, Aisen P, et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol. 2021 Nov;17(11):703–714. doi: 10.1038/s41582-021-00545-1
  • Srinivasan S, Kryza T, Batra J, et al. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer. 2022 Apr;22(4):223–238. doi: 10.1038/s41568-021-00436-z
  • Perez-Silva JG, Espanol Y, Velasco G, et al. The Degradome database: expanding roles of mammalian proteases in life and disease. Nucleic Acids Res. 2016 Jan 4;44(D1):D351–5. doi: 10.1093/nar/gkv1201
  • Karsdal MA, Daniels SJ, Holm Nielsen S, et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020 Apr;40(4):736–750. doi: 10.1111/liv.14390
  • Huesgen PF, Lange PF, Overall CM. Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics Clin Appl. 2014 Jun;8(5–6):338–350. doi: 10.1002/prca.201300104
  • Eckhard U, Marino G, Butler GS, et al. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie. 2016 Mar;122:110–118.
  • Bogaert A, Fernandez E, Gevaert K. N-Terminal proteoforms in human disease. Trends Biochem Sci. 2020 Apr;45(4):308–320. doi: 10.1016/j.tibs.2019.12.009
  • Forgrave LM, Wang M, Yang D, et al. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med. 2022 Jan;28:e00260.
  • Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J. [2018 Aug 1];37(15). doi: 10.15252/embj.201899456
  • Niedermaier S, Huesgen PF. Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. Biochim Biophys Acta Proteins Proteom. 2019;1867(12):140138. doi: 10.1016/j.bbapap.2018.09.004
  • Bertrand J, Bollmann M. Soluble syndecans: biomarkers for diseases and therapeutic options. Br J Pharmacol. 2019 Jan;176(1):67–81. doi: 10.1111/bph.14397
  • Favresse J, Lippi G, Roy PM, et al. D-dimer: preanalytical, analytical, postanalytical variables, and clinical applications. Crit Rev Clin Lab Sci. 2018 Dec;55(8):548–577. doi: 10.1080/10408363.2018.1529734
  • Karsdal MA, Henriksen K, Leeming DJ, et al. Biochemical markers and the FDA critical path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers. 2009 May;14(3):181–202. doi: 10.1080/13547500902777608
  • Bertelsen DM, Neergaard JS, Bager CL, et al. Matrix metalloproteinase mediated type I collagen degradation is an independent predictor of increased risk of acute myocardial infarction in postmenopausal women. Sci Rep. 2018 Mar 29;8(1):5371. doi: 10.1038/s41598-018-23458-4
  • Otaki Y, Watanabe T, Takahashi H, et al. Serum carboxy-terminal telopeptide of type I collagen (I-CTP) is predictive of clinical outcome in peripheral artery disease patients following endovascular therapy. Heart Vessels. 2017 Feb;32(2):149–156. doi: 10.1007/s00380-016-0858-2
  • Leeming DJ, Byrjalsen I, Sand JMB, et al. Biomarkers of collagen turnover are related to annual change in FEV1 in patients with chronic obstructive pulmonary disease within the ECLIPSE study. BMC Pulm Med. 2017 Dec 4;17(1):164. doi: 10.1186/s12890-017-0505-4
  • Daniels SJ, Leeming DJ, Eslam M, et al. ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis. Hepatology. 2019 Mar;69(3):1075–1086. doi: 10.1002/hep.30163
  • Nielsen MJ, Veidal SS, Karsdal MA, et al. Plasma pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int. 2015 Feb;35(2):429–437. doi: 10.1111/liv.12700
  • Skjot-Arkil H, Clausen RE, Rasmussen LM, et al. Acute myocardial infarction and pulmonary diseases result in two different degradation profiles of Elastin as quantified by two novel ELISAs. PLoS One. 2013;8(6):e60936. doi: 10.1371/journal.pone.0060936
  • Leeming DJ, Willumsen N, Sand JMB, et al. A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem Biophys Rep. 2019 Mar;17:38–43.
  • Bridge JA, Lee JC, Daud A, et al. Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin Cancer. Front Med. 2018;5:351. doi: 10.3389/fmed.2018.00351
  • Zhang L, Hu XZ, Li X, et al. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members. Transl Psychiatry. 2020 Jan 23;10(1):31. doi: 10.1038/s41398-020-0693-1
  • Cox JH, Dean RA, Roberts CR, et al. Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. J Biol Chem. 2008 Jul 11;283(28):19389–19399. doi: 10.1074/jbc.M800266200
  • Repnik U, Starr AE, Overall CM, et al. Cysteine Cathepsins Activate ELR chemokines and inactivate non-ELR chemokines. J Biol Chem. 2015 May 29;290(22):13800–13811. doi: 10.1074/jbc.M115.638395
  • Starr AE, Dufour A, Maier J, et al. Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16. J Biol Chem. 2012 Feb 17;287(8):5848–5860. doi: 10.1074/jbc.M111.314609
  • Schmidt A, Farine H, Keller MP, et al. Immunoaffinity Targeted mass spectrometry analysis of human plasma samples reveals an imbalance of active and inactive CXCL10 in primary Sjögren’s Syndrome disease patients. J Proteome Res. 2020 Oct 2;19(10):4196–4209. doi: 10.1021/acs.jproteome.0c00494
  • Soetkamp D, Raedschelders K, Mastali M, et al. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Rev Proteomics. 2017 Nov 02;14(11):973–986. doi: 10.1080/14789450.2017.1387054
  • Dancey JE, Dobbin KK, Groshen S, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010 Mar 15;16(6):1745–1755. doi: 10.1158/1078-0432.CCR-09-2167
  • Jennings L, Van Deerlin VM, Gulley ML. Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med. 2009 May;133(5):743–755. doi: 10.5858/133.5.743
  • Grant RP, Hoofnagle AN. From lost in translation to paradise found: enabling protein biomarker method transfer by mass spectrometry. Clin Chem. 2014 Jul;60(7):941–944. doi: 10.1373/clinchem.2014.224840
  • Doll S, Kriegmair MC, Santos A, et al. Rapid proteomic analysis for solid tumors reveals LSD1 as a drug target in an end-stage cancer patient. Mol Oncol. 2018 Aug;12(8):1296–1307. doi: 10.1002/1878-0261.12326
  • Koudelka T, Winkels K, Kaleja P, et al. Shedding light on both ends: an update on analytical approaches for N- and C-terminomics. Biochim Biophys Acta, Mol Cell Res. 2022 Jan;1869(1):119137. doi: 10.1016/j.bbamcr.2021.119137
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016 Sep 14;537(7620):347–355. doi: 10.1038/nature19949
  • Werner J, Bernhard P, Cosenza-Contreras M, et al. Targeted and explorative profiling of kallikrein proteases and global proteome biology of pancreatic ductal adenocarcinoma, chronic pancreatitis, and normal pancreas highlights disease-specific proteome remodelling. Neoplasia. 2023 Feb;36:100871.
  • Bogaert A, Gevaert K. Protein amino-termini and how to identify them. Expert Rev Proteomics. 2020 Jul;17(7–8):581–594. doi: 10.1080/14789450.2020.1821657
  • Wang R, Wang Z, Lu H. Separation methods for system-wide profiling of protein terminome. Proteomics. 2023 Feb;23(3–4):e2100374. doi: 10.1002/pmic.202100374
  • Abrahmsén L, Tom J, Burnier J, et al. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry. 1991 Apr 30;30(17):4151–4159. doi: 10.1021/bi00231a007
  • Mahrus S, Trinidad JC, Barkan DT, et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell. 2008 Sep 5;134(5):866–876. doi: 10.1016/j.cell.2008.08.012
  • Weeks AM, Wells JA. Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat Chem Biol. 2018 Jan;14(1):50–57. doi: 10.1038/nchembio.2521
  • Timmer JC, Enoksson M, Wildfang E, et al. Profiling constitutive proteolytic events in vivo. Biochem J. 2007 Oct 1;407(1):41–48. doi: 10.1042/BJ20070775
  • Shin S, Hong JH, Na Y, et al. Development of Multiplexed immuno-N-Terminomics to reveal the landscape of proteolytic processing in early embryogenesis of drosophila melanogaster. Anal Chem. 2020 Apr 7;92(7):4926–4934. doi: 10.1021/acs.analchem.9b05035
  • Xu G, Shin SB, Jaffrey SR. Chemoenzymatic labeling of protein C-termini for positive selection of C-terminal peptides. ACS Chem Biol. 2011 Oct 21;6(10):1015–1020. doi: 10.1021/cb200164h
  • Liu M, Fang C, Pan X, et al. Positive enrichment of C-terminal peptides using oxazolone chemistry and biotinylation. Anal Chem. 2015 Oct 6;87(19):9916–9922. doi: 10.1021/acs.analchem.5b02437
  • Staes A, Van Damme P, Helsens K, et al. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics. 2008 Apr;8(7):1362–1370. doi: 10.1002/pmic.200700950
  • Kleifeld O, Doucet A, Auf Dem Keller U, et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nature Biotechnol. 2010 Mar;28(3):281–288. doi: 10.1038/nbt.1611
  • Kleifeld O, Doucet A, Prudova A, et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc. 2011 Oct;6(10):1578–1611. doi: 10.1038/nprot.2011.382
  • Schilling O, Barre O, Huesgen PF, et al. Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods. 2010 Jul;7(7):508–511. doi: 10.1038/nmeth.1467
  • Van Damme P, Staes A, Bronsoms S, et al. Complementary positional proteomics for screening substrates of endo- and exoproteases. Nat Methods. 2010 Jul;7(7):512–515. doi: 10.1038/nmeth.1469
  • Huesgen PF, Lange PF, Rogers LD, et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods. 2015 Nov 24;12(1):55–58. doi: 10.1038/nmeth.3177
  • Wilson JP, Ipsaro JJ, Del Giudice SN, et al. Tryp-N: a thermostable protease for the production of N-terminal argininyl and lysinyl peptides. J Proteome Res. 2020 Apr 3;19(4):1459–1469. doi: 10.1021/acs.jproteome.9b00713
  • Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat Protoc. 2016 May;11(5):993–1006. doi: 10.1038/nprot.2016.057
  • Gorman JJ, Shiell BJ. Isolation of carboxyl-termini and blocked amino-termini of viral proteins by high-performance cation-exchange chromatography. J Chromatogr. 1993 Aug 27;646(1):193–205. doi: 10.1016/S0021-9673(99)87021-6
  • Dormeyer W, Mohammed S, Breukelen B, et al. Targeted analysis of protein termini. J Proteome Res. 2007 Dec;6(12):4634–4645. doi: 10.1021/pr070375k
  • Venne AS, Solari FA, Faden F, et al. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics. 2015 Jul;15(14):2458–2469. doi: 10.1002/pmic.201500014
  • Tsumagari K, Chang CH, Ishihama Y. Exploring the landscape of ectodomain shedding by quantitative protein terminomics. iScience. 2021 Apr 23;24(4):102259. doi: 10.1016/j.isci.2021.102259
  • Tsumagari K, Chang CH, Ishihama Y. A protocol for analyzing the protein terminome of human cancer cell line culture supernatants. STAR Protoc. 2021 Sep 17;2(3):100682. doi: 10.1016/j.xpro.2021.100682
  • Chang CH, Chang HY, Rappsilber J, et al. Isolation of acetylated and unmodified protein N-Terminal peptides by strong cation exchange chromatographic separation of TrypN-Digested peptides. Mol Cell Proteomics. 2021;20:100003. doi: 10.1074/mcp.TIR120.002148
  • Abbey SR, Eckhard U, Solis N, et al. The human odontoblast cell Layer and dental pulp proteomes and N-Terminomes. J Dent Res. 2018 Mar;97(3):338–346. doi: 10.1177/0022034517736054
  • Eckhard U, Marino G, Abbey SR, et al. The human dental pulp proteome and N-Terminome: Levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in the human proteome project in underexplored tissues. J Proteome Res. 2015 Sep 4;14(9):3568–3582. doi: 10.1021/acs.jproteome.5b00579
  • Rinschen MM, Hoppe AK, Grahammer F, et al. N-Degradomic analysis reveals a proteolytic network processing the Podocyte Cytoskeleton. J Am Soc Nephrol. 2017 Oct;28(10):2867–2878. doi: 10.1681/ASN.2016101119
  • Lange PF, Huesgen PF, Nguyen K, et al. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res. 2014 Apr 4;13(4):2028–2044. doi: 10.1021/pr401191w
  • Wildes D, Wells JA. Sampling the N-terminal proteome of human blood. Proc Natl Acad Sci USA. 2010 Mar 9;107(10):4561–4566. doi: 10.1073/pnas.0914495107
  • Wiita AP, Hsu GW, Lu CM et al. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc Natl Acad Sci USA. 2014 May 27;111(21):7594–7599. doi: 10.1073/pnas.1405987111
  • Mallia-Milanes B, Dufour A, Philp C et al. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. Am J Physiol Lung Cell Mol Physiol. 2018 Dec 1;315(6):L1003–L1014. doi: 10.1152/ajplung.00175.2018
  • Shema G, Nguyen MTN, Solari FA, et al. Simple, scalable, and ultrasensitive tip-based identification of protease substrates. Molecular & Cellular Proteomics: MCP. 2018 Apr;17(4):826–834. doi: 10.1074/mcp.TIR117.000302
  • McDonald L, Beynon RJ. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nat Protoc. 2006;1(4):1790–1798. doi: 10.1038/nprot.2006.317
  • Ju S, Kwon Y, Kim JM, et al. iNrich, Rapid and robust method to enrich N-Terminal proteome in a highly multiplexed platform. Anal Chem. 2020 May 5;92(9):6462–6469. doi: 10.1021/acs.analchem.9b05653
  • Lee S, Ju S, Kim SJ, et al. tipNrich: a tip-based N-Terminal proteome enrichment method. Anal Chem. 2021 Oct 26;93(42):14088–14098. doi: 10.1021/acs.analchem.1c01722
  • Hughes CS, Moggridge S, Muller T, et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019 Jan;14(1):68–85. doi: 10.1038/s41596-018-0082-x
  • Muller T, Kalxdorf M, Longuespee R, et al. Automated sample preparation with SP3 for low-input clinical proteomics. Mol Syst Biol. 2020 Jan;16(1):e9111. doi: 10.15252/msb.20199111
  • Chen L, Shan Y, Weng Y, et al. Hydrophobic tagging-assisted N-Termini enrichment for in-depth N-Terminome analysis. Anal Chem. 2016 Sep 6;88(17):8390–8395. doi: 10.1021/acs.analchem.6b02453
  • Weng SSH, Demir F, Ergin EK et al. Sensitive determination of proteolytic proteoforms in limited microscale proteome samples.Mol Cell Proteomics. 2019 Nov;18(11):2335–2347. doi: 10.1074/mcp.TIR119.001560
  • Uzozie AC, Tsui J, Lange PF. HUNTER: sensitive automated characterization of proteolytic systems by N termini enrichment from microscale specimen. Methods Mol Biol. 2022;2456:95–122.
  • Uzozie AC, Ergin EK, Rolf N, et al. PDX models reflect the proteome landscape of pediatric acute lymphoblastic leukemia but divert in select pathways. J Exp Clin Cancer Res. 2021 Mar 15;40(1):96. doi: 10.1186/s13046-021-01835-8
  • Perrar A, Dissmeyer N, Huesgen PF. New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. J Exp Bot. 2019 Apr 12;70(7):2021–2038. doi: 10.1093/jxb/erz104
  • Aksnes H, Ree R, Arnesen T. Co-translational, post-translational, and non-catalytic Roles of N-Terminal Acetyltransferases. Molecular Cell. 2019 Mar 21;73(6):1097–1114. doi: 10.1016/j.molcel.2019.02.007
  • Nierves L, Guo J, Chen S, et al. Multi-omic profiling of the leukemic microenvironment shows bone marrow interstitial fluid is distinct from peripheral blood plasma. Exp Hematol Oncol. 2022 Sep 15;11(1):56. doi: 10.1186/s40164-022-00310-0
  • Millar AH, Heazlewood JL, Giglione C, et al. The scope, functions, and dynamics of posttranslational protein modifications. Annu Rev Plant Biol. 2019 Feb 20;70(1):119–151. doi: 10.1146/annurev-arplant-050718-100211
  • Lai ZW, Weisser J, Nilse L et al. Formalin-fixed, Paraffin-Embedded Tissues (FFPE) as a robust source for the profiling of native and protease-generated protein amino termini M. Mol Cell Proteomics. 2016;15(6):2203–2213. doi: 10.1074/mcp.O115.056515
  • Savickas S, Kastl P, Auf Dem Keller U. Combinatorial degradomics: precision tools to unveil proteolytic processes in biological systems. Biochim Biophys Acta Proteins Proteom. 2020 Jun;1868(6):140392. doi: 10.1016/j.bbapap.2020.140392
  • Budnik B, Levy E, Harmange G, et al. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018 Oct 22;19(1):161. doi: 10.1186/s13059-018-1547-5
  • Fortelny N, Cox JH, Kappelhoff R, et al. Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol. 2014 May;12(5):e1001869. doi: 10.1371/journal.pbio.1001869
  • Ricklin D, Mastellos DC, Reis ES, et al. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018 Jan;14(1):26–47. doi: 10.1038/nrneph.2017.156
  • Hellinger R, Sigurdsson A, Wu W, et al. Peptidomics. Nat Rev Dis Primers. 2023;3(1). doi: 10.1038/s43586-023-00205-2
  • Debunne N, De Spiegeleer A, Depuydt D, et al. Influence of blood collection methods and long-term plasma storage on quorum-sensing peptide stability. ACS Omega. 2020 Jul 7;5(26):16120–16127. doi: 10.1021/acsomega.0c01723
  • Cavaco M, Valle J, Flores I, et al. Estimating peptide half-life in serum from tunable, sequence-related physicochemical properties. Clin Transl Sci. 2021 Jul;14(4):1349–1358. doi: 10.1111/cts.12985
  • Gao J, Ulvik A, McCann A, et al. Microheterogeneity and preanalytical stability of protein biomarkers of inflammation and renal function. Talanta. 2021 Feb 1;223(Pt 1):121774. doi: 10.1016/j.talanta.2020.121774
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nature Biotechnol. 2006 Aug;24(8):971–983. doi: 10.1038/nbt1235
  • Geyer PE, Holdt LM, Teupser D et al. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017 Sep 26;13(9):942. doi: 10.15252/msb.20156297
  • Geyer PE, Kulak NA, Pichler G, et al. Plasma proteome profiling to assess human Health and disease. Cell Syst. 2016 Mar 23;2(3):185–195. doi: 10.1016/j.cels.2016.02.015
  • Geyer PE, Wewer Albrechtsen NJ, Tyanova S, et al. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. 2016 Dec 22;12(12):901. doi: 10.15252/msb.20167357
  • Mann M, Kumar C, Zeng WF, et al. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021 Aug 18;12(8):759–770. doi: 10.1016/j.cels.2021.06.006
  • Shahinian JH, Mayer B, Tholen S, et al. Proteomics highlights decrease of matricellular proteins in left ventricular assist device therapy†. Eur J Cardiothorac Surg. 2017 Jun 1;51(6):1063–1071. doi: 10.1093/ejcts/ezx023
  • Halstenbach T, Nelson K, Iglhaut G et al. Impact of peri-implantitis on the proteome biology of crevicular fluid: a pilot study. J Periodontol 2023;94(7):835–847. doi:10.1002/JPER.22-0461.
  • Fahrner M, Kook L, Fröhlich K et al. A systematic evaluation of semispecific peptide search parameter enables identification of Previously undescribed N-Terminal peptides and conserved proteolytic processing in Cancer cell lines. Proteomes. 2021 May 25;9(2):26. doi: 10.3390/proteomes9020026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.