363
Views
0
CrossRef citations to date
0
Altmetric
Review

Enterogenic metabolomics signatures of depression: what are the possibilities for the future

, , , , , , & show all
Pages 397-418 | Received 06 Jun 2023, Accepted 24 Oct 2023, Published online: 25 Nov 2023

References

  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global burden of disease study 2017. The Lancet.2018 Nov 10;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7
  • Global. Regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global burden of disease study 2019. Lancet Psychiatry. 2022 Feb;9(2):137–150. doi: 10.1016/S2215-0366(21)00395-3
  • Malhi GS, Mann JJ. Depression. Lancet. 2018 Nov 24;392(10161):2299–2312.
  • Santomauro DF, Mantilla Herrera AM, Shadid J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet (London, England). 2021 Nov 6;398(10312):1700–1712. doi: 10.1016/S0140-6736(21)02143-7
  • Liu L, Wang H, Yu Y, et al. Microbial regulation of a lincRNA-miRNA-mRNA network in the mouse hippocampus. Epigenomics. 2020 Aug;12(16):1377–1387. doi: 10.2217/epi-2019-0307
  • Wang H, Liu L, Chen X, et al. MicroRNA–messenger RNA Regulatory network mediates disrupted TH17 Cell differentiation in depression. Front Psychiatry. 2022;13:824209. doi: 10.3389/fpsyt.2022.824209
  • Hansen R, Gaynes B, Thieda P, et al. Meta-analysis of major depressive disorder relapse and recurrence with second-generation antidepressants. Psychiatric Serv (Washington, DC). 2008 Oct;59(10):1121–1130. doi: 10.1176/ps.2008.59.10.1121
  • Zhou X, Teng T, Zhang Y, et al. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry. 2020 Jul;7(7):581–601. doi: 10.1016/S2215-0366(20)30137-1
  • Li Z, Lai J, Zhang P, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry. 2022 Oct;27(10):4123–4135. doi: 10.1038/s41380-022-01569-9
  • Yang J, Zheng P, Li Y, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 2020 Dec;6(49). doi: 10.1126/sciadv.aba8555
  • Shi L, Wudy SA, Buyken AE, et al. Body fat and animal protein intakes are associated with adrenal androgen secretion in children. Am J Clin Nutr. 2009 Nov;90(5):1321–1328. doi: 10.3945/ajcn.2009.27964
  • Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017 May 15;36(10):1302–1315.
  • Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019 Dec;20(4):461–472. doi: 10.1007/s11154-019-09512-0
  • Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021 May;12(5):360–373. doi: 10.1007/s13238-020-00814-7
  • Chudzik A, Słowik T, Kochalska K, et al. Continuous ingestion of Lacticaseibacillus rhamnosus JB-1 during chronic stress ensures neurometabolic and behavioural stability in rats. Int J Mol Sci. 2022 May 5;23(9):5173. doi: 10.3390/ijms23095173
  • Takeda T, Chiba Y. Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: an open-label pilot study. Neuropsychopharm Rep. 2022 Jun;42(2):127–134. doi: 10.1002/npr2.12234
  • Pu J, Yu Y, Liu Y, et al. MENDA: a comprehensive curated resource of metabolic characterization in depression. Brief Bioinform. 2020 Jul 15;21(4):1455–1464. doi: 10.1093/bib/bbz055
  • Wishart DS, Guo A, Oler E, et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022 Jan 7;50(D1):D622–d631. doi: 10.1093/nar/gkab1062
  • Ahmadzai MM, Seguella L, Gulbransen BD. Circuit-specific enteric glia regulate intestinal motor neurocircuits. Proc Natl Acad Sci, USA. 2021 Oct 5;118(40). doi: 10.1073/pnas.2025938118
  • Yu Y, Yang W, Li Y, et al. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm Bowel Dis. 2020 Jan 1;26(1):11–20. doi: 10.1093/ibd/izz217
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet (London, England). 2003 Feb 8;361(9356):512–519.
  • Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019 Apr;16(4):235–246. doi: 10.1038/s41575-018-0099-1
  • Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019 Apr;15(4):226–237. doi: 10.1038/s41574-019-0168-8
  • Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018 Apr 9;33(4):570–580. doi: 10.1016/j.ccell.2018.03.015
  • Shi N, Li N, Duan X, et al. Interaction between the gut microbiome and mucosal immune system. Military Med Res. 2017;4(1):14.
  • Fukui H. Increased intestinal permeability and decreased barrier function: does It really influence the risk of inflammation? Inflamm Intest Dis. 2016 Oct;1(3):135–145. doi: 10.1159/000447252
  • Kelly JR, Kennedy PJ, Cryan JF, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi: 10.3389/fncel.2015.00392
  • Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol. 2012 Aug;24(4):392–397. doi: 10.1016/j.coi.2012.05.007
  • Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018 Jul 4;9(4):308–325.
  • Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain. 2017 Jun 24;10(1):28.
  • Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biological Psychiatry. 2006 Jun 15;59(12):1116–1127.
  • Castrén E, Võikar V, Rantamäki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol. 2007 Feb;7(1):18–21. doi: 10.1016/j.coph.2006.08.009
  • Li H, Wang P, Huang L, et al. Effects of regulating gut microbiota on the serotonin metabolism in the chronic unpredictable mild stress rat model. Neurogastroenterology Motil. 2019 Oct;31(10):e13677. doi: 10.1111/nmo.13677
  • Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015 Apr 9;161(2):264–276. doi: 10.1016/j.cell.2015.02.047
  • Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10;308(5728):1635–1638. doi: 10.1126/science.1110591
  • Gaci N, Borrel G, Tottey W, et al. Archaea and the human gut: new beginning of an old story. WJG. 2014 Nov 21;20(43):16062–16078. doi: 10.3748/wjg.v20.i43.16062
  • Lankelma JM, Nieuwdorp M, de Vos WM, et al. The gut microbiota in internal medicine: implications for health and disease. Neth J Med. 2015 Feb;73(2):61–68.
  • Scarpellini E, Ianiro G, Attili F, et al. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis. 2015 Dec;47(12):1007–1012. doi: 10.1016/j.dld.2015.07.008
  • Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein & Cell. 2010 Aug;1(8):718–725. doi: 10.1007/s13238-010-0093-z
  • O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–693. doi: 10.1038/sj.embor.7400731
  • Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019 Oct 1;99(4):1877–2013. doi: 10.1152/physrev.00018.2018
  • Liu L, Wang H, Chen X, et al. Integrative analysis of long non-coding RNAs, messenger RNAs, and MicroRNAs indicates the neurodevelopmental dysfunction in the hippocampus of gut microbiota-dysbiosis mice. Front Mol Neurosci. 2021;14:745437. doi: 10.3389/fnmol.2021.745437
  • Liu L, Wang H, Zhang H, et al. Toward a deeper understanding of gut microbiome in depression: the promise of clinical applicability. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022 Dec;9(35):e2203707. doi: 10.1002/advs.202203707
  • Wang H, Liu L, Rao X, et al. Integrated phosphoproteomic and metabolomic profiling reveals perturbed pathways in the hippocampus of gut microbiota dysbiosis mice. Transl Psychiatry. 2020 Oct 13;10(1):346. doi: 10.1038/s41398-020-01024-9
  • Liu L, Wang H, Chen X, et al. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023 Apr;90:104527.
  • Misiak B, Łoniewski I, Marlicz W, et al. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Progress in neuro-psychopharmacology & biological psychiatry. Prog Neuro Psychopharmacol Biol Psychiatry. 2020 Aug 30;102:109951.
  • Roth W, Zadeh K, Vekariya R, et al. Tryptophan metabolism and Gut-Brain Homeostasis. Int J Mol Sci. 2021 Mar 15;22(6):2973. doi: 10.3390/ijms22062973
  • Li B, Guo K, Zeng L, et al. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Transl Psychiatry. 2018 Jan 31;8(1):34. doi: 10.1038/s41398-017-0078-2
  • Wozniak H, Beckmann TS, Fröhlich L, et al. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care. 2022 Aug 18;26(1):250. doi: 10.1186/s13054-022-04127-5
  • Bianchi F, Larsen N, Tieghi TM, et al. In vitro modulation of human gut microbiota composition and metabolites by Bifidobacterium longum BB-46 and a citric pectin. Food Research International. 2019 Jun;120:595–602.
  • Oliver A, Chase AB, Weihe C, et al. High-fiber, whole-Food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems. 2021 Mar 16;6(2). doi: 10.1128/mSystems.00115-21
  • Zhou Z, Sun B, Yu D, et al. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2022;12:834485. doi: 10.3389/fcimb.2022.834485
  • Sha L, MacIntyre L, Machell JA, et al. Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Mol Psychiatry. 2012 Mar;17(3):267–279. doi: 10.1038/mp.2011.73
  • Guo XJ, Wu P, Cui XH, et al. Pre- and post-treatment levels of plasma metabolites in patients with bipolar depression. Front Psychiatry. 2021;12:747595. doi: 10.3389/fpsyt.2021.747595
  • Soh NL, Walter G, Baur L, et al. Nutrition, mood and behaviour: a review. Acta Neuropsychiatr. 2009 Oct;21(5):214–227. doi: 10.1111/j.1601-5215.2009.00413.x
  • Dallman MF, Pecoraro N, Akana SF, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci, USA. 2003 Sep 30;100(20):11696–11701. doi: 10.1073/pnas.1934666100
  • Shabbir F, Patel A, Mattison C, et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013 Feb;62(3):324–329. doi: 10.1016/j.neuint.2012.12.014
  • Włodarczyk A, Cubała WJ, Stawicki M. Ketogenic diet for depression: a potential dietary regimen to maintain euthymia? Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jul 13;109:110257. doi: 10.1016/j.pnpbp.2021.110257
  • Hao Y, Tong Y, Guo Y, et al. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway. Pharmacopsychiatry. 2021 May;54(3):131–141. doi: 10.1055/a-1351-0566
  • Yang J, Zhang Z, Xie Z, et al. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2022 May;149:112837.
  • Hebert JC, Radford-Smith DE, Probert F, et al. Mom’s diet matters: maternal prebiotic intake in mice reduces anxiety and alters brain gene expression and the fecal microbiome in offspring. Brain Behav Immun. 2021 Jan;91:230–244.
  • Yu XY, Yin HH, Zhu JC. Increased gut absorptive capacity in rats with severe head injury after feeding with probiotics. Nutrition. 2011 Jan;27(1):100–107. doi: 10.1016/j.nut.2010.01.010
  • Li J, Zhang SX, Wang W, et al. Potential antidepressant and resilience mechanism revealed by metabolomic study on peripheral blood mononuclear cells of stress resilient rats. Behav Brain Res. 2017 Mar 1;320:12–20.
  • Fan J, Guo F, Mo R, et al. O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. J Clin Investig. 2023 Apr 3;133(7). doi: 10.1172/JCI160016
  • Romeo B, Choucha W, Fossati P, et al. Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J Psychiatry Neurosci: JPN. 2018 Jan;43(1):58–66. doi: 10.1503/jpn.160228
  • Patterson E, Ryan PM, Wiley N, et al. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Sci Rep. 2019 Nov 8;9(1):16323. doi: 10.1038/s41598-019-51781-x
  • Wu SJ, Chang CY, Lai YT, et al. Increasing γ-aminobutyric acid content in vegetable soybeans via high-pressure processing and efficacy of their antidepressant-like activity in mice. Foods (Basel, Switzerland). 2020 Nov 16;9(11):1673. doi: 10.3390/foods9111673
  • Chen YM, Lin CH, Lane HY. Survey of NMDA receptor-related biomarkers for depression. Curr Pharm Des. 2020;26(2):228–235. doi: 10.2174/1381612826666200122155206
  • Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021 Jun 14;9(1):140.
  • Chang CH, Lin CH, Lane HY. D-glutamate and Gut Microbiota in Alzheimer’s disease. IJMS. 2020 Apr 11;21(8):2676.
  • Ali-Sisto T, Tolmunen T, Viinamäki H, et al. Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J Affective Disorders. 2018 Mar 15;229:145–151.
  • Ozden A, Angelos H, Feyza A, et al. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res. 2020 Jan;120:21–28.
  • Nicolas GR, Chang PV. Deciphering the chemical lexicon of host-gut microbiota interactions. Trends Pharmacol Sci. 2019 Jun;40(6):430–445. doi: 10.1016/j.tips.2019.04.006
  • Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020 Jan;25(1):131–147. doi: 10.1038/s41380-019-0414-4
  • Dell’osso L, Carmassi C, Mucci F, et al. Depression, serotonin and tryptophan. Curr Pharm Des. 2016;22(8):949–954.
  • Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013
  • Li S, Xu K, Cheng Y, et al. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol. 2023;14:1188455. doi: 10.3389/fmicb.2023.1188455
  • Ye X, Li H, Anjum K, et al. Dual role of Indoles derived from intestinal microbiota on human health. Front Immunol. 2022;13:903526. doi: 10.3389/fimmu.2022.903526
  • Choi Y, Kim Y, Lee HY, et al. Tetragonia tetragonioides relieves depressive-like behavior through the restoration of glial loss in the prefrontal cortex. Evidence-based complementary and alternative medicine: eCAM. Evid Based Complement Alternat Med. 2021;2021:1–9. doi: 10.1155/2021/8888841
  • David J, Gormley S, McIntosh AL, et al. L-alpha-amino adipic acid provokes depression-like behaviour and a stress related increase in dendritic spine density in the pre-limbic cortex and hippocampus in rodents. Behav Brain Res. 2019 Apr 19;362:90–102.
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May 3;7(3):189–200.
  • Li M, Yang L, Mu C, et al. Gut microbial metabolome in inflammatory bowel disease: from association to therapeutic perspectives. Comput Struct Biotechnol J. 2022;20:2402–2414. doi: 10.1016/j.csbj.2022.03.038
  • Grosso G, Galvano F, Marventano S, et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev. 2014;2014:313570. doi: 10.1155/2014/313570
  • Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol. 2018 Mar 25;9(1):345–381.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016 Jun 2;165(6):1332–1345. doi: 10.1016/j.cell.2016.05.041
  • Bischoff SC. Gut health’: a new objective in medicine? BMC Med. 2011 Mar 14;9(1):24.
  • Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012 Jun 8;336(6086):1262–1267. doi: 10.1126/science.1223813
  • Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015 Jul;18(7):965–977. doi: 10.1038/nn.4030
  • Ren M, Zhang H, Qi J, et al. An Almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: a randomized controlled trial. Nutrients. 2020 Oct 3;12(10):3036. doi: 10.3390/nu12103036
  • Tian P, O’Riordan KJ, Lee YK, et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress. 2020 May;12:100216.
  • Simpson CA, Diaz-Arteche C, Eliby D, et al. The gut microbiota in anxiety and depression - a systematic review. Clin Psychol Rev. 2021 Feb;83:101943.
  • Wu M, Tian T, Mao Q, et al. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl Psychiatry. 2020 Oct 16;10(1):350. doi: 10.1038/s41398-020-01038-3
  • Reigstad CS, Salmonson CE, Rainey JF 3rd, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015 Apr;29(4):1395–1403. doi: 10.1096/fj.14-259598
  • Lv WJ, Liu C, Yu LZ, et al. Melatonin alleviates neuroinflammation and metabolic disorder in DSS-Induced depression rats. Oxid Med Cell Longevity. 2020;2020:1241894. doi: 10.1155/2020/1241894
  • Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018 Jan;11(1):3–20. doi: 10.1038/mi.2017.73
  • Barnett JA, Bandy ML, Gibson DL. Is the use of glyphosate in modern agriculture resulting in increased neuropsychiatric conditions through modulation of the gut-brain-microbiome axis? Front Nutr. 2022;9:827384. doi: 10.3389/fnut.2022.827384
  • Müller B, Rasmusson AJ, Just D, et al. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom Med. 2021 Sep 1;83(7):693–699. doi: 10.1097/PSY.0000000000000965
  • Fuchikami M, Yamamoto S, Morinobu S, et al. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuro Psychopharmacol Biol Psychiatry. 2016 Jan 4;64:320–324.
  • Yamawaki Y, Fuchikami M, Morinobu S, et al. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J Biol Psychiatry. 2012 Sep;13(6):458–467. doi: 10.3109/15622975.2011.585663
  • Sun J, Wang F, Hong G, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci lett. 2016 Apr 8;618:159–166.
  • Zhuang M, Shang W, Ma Q, et al. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion. Molecular Nutrition Food Res. 2019 Dec;63(23):e1801187. doi: 10.1002/mnfr.201801187
  • Huang W, Hu W, Cai L, et al. Acetate supplementation produces antidepressant-like effect via enhanced histone acetylation. J Affective Disorders. 2021 Feb 15;281:51–60.
  • Zhang H, Etherington LA, Hafner AS, et al. Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule. Mol Psychiatry. 2013 Apr;18(4):471–484. doi: 10.1038/mp.2012.80
  • Hao C, Gao Z, Liu X, et al. Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Sci Rep. 2020 Nov 16;10(1):19917. doi: 10.1038/s41598-020-77085-z
  • Egerton S, Donoso F, Fitzgerald P, et al. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci. 2022 Feb;25(2):356–378. doi: 10.1080/1028415X.2020.1753322
  • Xiong F, Chen S, Jakovlić I, et al. The role of intestinal microbiota in regulating the metabolism of bile acids is conserved across vertebrates. Front Microbiol. 2022;13:824611. doi: 10.3389/fmicb.2022.824611
  • Huang F, Zheng X, Ma X, et al. Theabrownin from pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun. 2019 Oct 31;10(1):4971. doi: 10.1038/s41467-019-12896-x
  • Jones BV, Begley M, Hill C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci, USA. 2008 Sep 9;105(36):13580–13585. doi: 10.1073/pnas.0804437105
  • Yu M, Jia H, Zhou C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal. 2017 May 10;138:231–239.
  • van den Munckhof ICL, Kurilshikov A, Ter Horst R, et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev. 2018 Dec;19(12):1719–1734. doi: 10.1111/obr.12750
  • Wang YD, Chen WD, Yu D, et al. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology. 2011 Oct;54(4):1421–1432. doi: 10.1002/hep.24525
  • Leng L, Zhuang K, Liu Z, et al. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron. 2018 Nov 7;100(3):551–563.e7. doi: 10.1016/j.neuron.2018.08.031
  • Moore LB, Goodwin B, Jones SA, et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci, USA. 2000 Jun 20;97(13):7500–7502. doi: 10.1073/pnas.130155097
  • Nobis A, Zalewski D, Waszkiewicz N. Peripheral markers of depression. J Clin Med. 2020 Nov 24;9(12):3793.
  • Zou L, Tian Y, Wang Y, et al. High-cholesterol diet promotes depression- and anxiety-like behaviors in mice by impact gut microbe and neuroinflammation. J Affective Disorders. 2023 Apr 14;327:425–438.
  • Beasley CL, Honer WG, Bergmann K, et al. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord. 2005 Oct;7(5):449–455. doi: 10.1111/j.1399-5618.2005.00239.x
  • Cepeda MS, Kern DM, Blacketer C, et al. Low levels of cholesterol and the cholesterol type are not associated with depression: results of a cross-sectional NHANES study. J Clin Lipidol. 2020 Jul;14(4):515–521. doi: 10.1016/j.jacl.2020.06.001
  • Seok S, Fu T, Choi SE, et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 2014 Dec 4;516(7529):108–111. doi: 10.1038/nature13949
  • Quinn M, McMillin M, Galindo C, et al. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis. 2014 Jun;46(6):527–534. doi: 10.1016/j.dld.2014.01.159
  • Feng L, Zhou N, Li Z, et al. Co-occurrence of gut microbiota dysbiosis and bile acid metabolism alteration is associated with psychological disorders in Crohn’s disease. FASEB J. 2022 Jan;36(1):e22100. doi: 10.1096/fj.202101088RRR
  • Zhao ZX, Fu J, Ma SR, et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics. 2018;8(21):5945–5959.
  • Zhang ZW, Han P, Fu J, et al. Gut microbiota-based metabolites of Xiaoyao Pills (a typical traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. J Ethnopharmacol. 2023 Sep 15;313:116555.
  • Yu JB, Zhao ZX, Peng R, et al. Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin. Front Pharmacol. 2019;10:268. doi: 10.3389/fphar.2019.00268
  • Zhang H, Liu YZ, Xu WC, et al. Metabolite and microbiome profilings of pickled tea elucidate the role of anaerobic fermentation in promoting high levels of gallic acid accumulation. J Agric Food Chem. 2020 Nov 25;68(47):13751–13759. doi: 10.1021/acs.jafc.0c06187
  • Yang K, Deng X, Jian S, et al. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome-metabolomics analysis. Front Immunol. 2021;12:813890. doi: 10.3389/fimmu.2021.813890
  • Nabavi SF, Habtemariam S, Di Lorenzo A, et al. Post-stroke depression modulation and in vivo antioxidant activity of gallic acid and its synthetic derivatives in a murine model system. Nutrients. 2016 Apr 28;8(5):248. doi: 10.3390/nu8050248
  • Xiao L, Liu Q, Luo M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome. Front Cell Infect Microbiol. 2021;11:729346. doi: 10.3389/fcimb.2021.729346
  • Pham VT, Dold S, Rehman A, et al. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr res. 2021 Nov;95:35–53.
  • LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013 Apr;24(2):160–168. doi: 10.1016/j.copbio.2012.08.005
  • Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148
  • Merra G, Dominici F, Gualtieri P, et al. Role of vitamin K2 in bone-vascular crosstalk. Int J Vitam Nutr Res. 2022 Aug 30. doi: 10.1024/0300-9831/a000761
  • Li Q, Chan H, Liu WX, et al. Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice. Cancer Cell. 2023 Aug 14;41(8):1450–1465.e8. doi: 10.1016/j.ccell.2023.06.011
  • Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr. 2018 May;57(Suppl 1):1–14. doi: 10.1007/s00394-018-1703-4
  • Puchacz E, Stumpf WE, Stachowiak EK, et al. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res. 1996 Feb;36(1):193–196. doi: 10.1016/0169-328X(95)00314-I
  • Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci. 2006 Aug;1074(1):261–271. doi: 10.1196/annals.1369.023
  • Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy–A review. Nutrients. 2016 Jan 27;8(2):68.
  • Long SJ, Benton D. Effects of vitamin and mineral supplementation on stress, mild psychiatric symptoms, and mood in nonclinical samples: a meta-analysis. Psychosom Med. 2013 Feb;75(2):144–153. doi: 10.1097/PSY.0b013e31827d5fbd
  • Mitchell ES, Conus N, Kaput J. B vitamin polymorphisms and behavior: evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline. Neuroscience & Biobehavioral Reviews. 2014 Nov;47:307–320. doi: 10.1016/j.neubiorev.2014.08.006
  • Almeida OP, Ford AH, Flicker L. Systematic review and meta-analysis of randomized placebo-controlled trials of folate and vitamin B12 for depression. Int Psychogeriatr. 2015 May;27(5):727–737. doi: 10.1017/S1041610215000046
  • Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. CMM. 2009 Apr;9(3):315–323. doi: 10.2174/156652409787847146
  • Naderi N, House JD. Recent developments in folate nutrition. Adv Food Nutr Res. 2018;83:195–213.
  • Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135–157. doi: 10.1080/19490976.2019.1638722
  • Mao J, Zhao P, Wang Q, et al. Repeated 3,3-Dimethyl-1-butanol exposure alters social dominance in adult mice. Neurosci lett. 2021 Jul 27;758:136006.
  • Zhao P, Meng L, Dou M, et al. Long-lasting effects of postweaning sodium butyrate exposure on social behaviors in adult mice. Brain Res Bull. 2020 Dec;165:209–217.
  • Ren Y, Bao S, Jia Y, et al. Metabolic profiling in bipolar disorder patients during depressive episodes. Front Psychiatry. 2020;11:569612. doi: 10.3389/fpsyt.2020.569612
  • Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020 Jul;2(7):566–571. doi: 10.1038/s42255-020-0243-4
  • Ma W, Song J, Wang H, et al. Chronic paradoxical sleep deprivation-induced depression-like behavior, energy metabolism and microbial changes in rats. Life Sci. 2019 May 15;225:88–97.
  • Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1(+) cells by bacterial metabolites. Nature. 2019 Feb;566(7742):110–114. doi: 10.1038/s41586-019-0884-1
  • Karnib N, El-Ghandour R, El Hayek L, et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacol. 2019 May;44(6):1152–1162. doi: 10.1038/s41386-019-0313-z
  • Boettger S, Wetzig F, Puta C, et al. Physical fitness and heart rate recovery are decreased in major depressive disorder. Psychosom Med. 2009 Jun;71(5):519–523. doi: 10.1097/PSY.0b013e3181a55303
  • Lauritzen KH, Morland C, Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral Cortex (New York, NY : 1991). 2014 Oct;24(10):2784–2795. doi: 10.1093/cercor/bht136
  • Caspani G, Kennedy S, Foster JA, et al. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell. 2019 Sep 27;6(10):454–481. doi: 10.15698/mic2019.10.693
  • Clarke PH. Hydrogen sulphide production by bacteria. J Gen Microbiol. 1953 Jun;8(3):397–407. doi: 10.1099/00221287-8-3-397
  • Han L, Zhao L, Zhou Y, et al. Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. Isme J. 2022 Apr;16(4):983–996. doi: 10.1038/s41396-021-01123-5
  • Marin IA, Goertz JE, Ren T, et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep. 2017 Mar 7;7(1):43859. doi: 10.1038/srep43859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.