197
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel proteomic technologies to address gaps in pre-clinical ovarian cancer biomarker discovery efforts

& ORCID Icon
Pages 439-450 | Received 05 Aug 2023, Accepted 11 Dec 2023, Published online: 20 Dec 2023

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023 Jan;73(1):17–48.
  • Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017 Feb;14(1):9–32. doi: 10.20892/j.issn.2095-3941.2016.0084
  • Rojas V, Hirshfield KM, Ganesan S, et al. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. Int J Mol Sci. 2016 Dec 15;17(12):2113. doi: 10.3390/ijms17122113
  • Kossai M, Leary A, Scoazec JY, et al. Ovarian Cancer: A Heterogeneous Disease. Pathobiology. 2018;85(1–2):41–49. doi: 10.1159/000479006
  • Vang R, Shih Ie M, Kurman RJ. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 2009 Sep;16(5):267–82. doi: 10.1097/PAP.0b013e3181b4fffa
  • Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019 Jul;69(4):280–304. doi: 10.3322/caac.21559
  • Kaldawy A, Segev Y, Lavie O, et al. Low-grade serous ovarian cancer: A review. Gynecol Oncol. 2016 Nov;143(2):433–438.
  • Slomovitz B, Gourley C, Carey MS, et al. Low-grade serous ovarian cancer: state of the science. Gynecol Oncol. 2020 Mar;156(3):715–725.
  • Malpica A, Deavers MT, Tornos C, et al. Interobserver and intraobserver variability of a two-tier system for grading ovarian serous carcinoma. Am J Surg Pathol. 2007 Aug;31(8):1168–74.
  • National Cancer Institute. SEER explorer: an interactive website for SEER cancer statistics 2023 [cited 2023 Jun 26] Available from: https://seer.cancer.gov/statistics-network/explorer/
  • Berek JS, Matias-Guiu X, Creutzberg C, et al. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet. 2023 Jun 20;34(5). doi: 10.3802/jgo.2023.34.e85
  • Edge SB, Compton CC. The American joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010 Jun;17(6):1471–4. doi: 10.1245/s10434-010-0985-4
  • Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. BMJ. 2020 Nov 9;371:m3773. doi: 10.1136/bmj.m3773
  • Wright AA, Bohlke K, Armstrong DK, et al. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of clinical Oncology clinical Practice Guideline. Gynecol Oncol. 2016 Oct;143(1):3–15.
  • Garzon S, Lagana AS, Casarin J, et al. Secondary and tertiary ovarian cancer recurrence: what is the best management? Gland Surg. 2020 Aug;9(4):1118–1129.
  • Glajzer J, Grabowski JP, Sehouli J, et al. Recurrent treatment in ovarian cancer patients: what are the best regimens and the order they should be given? Curr Treat Options Oncol. 2020 Apr 30;21(6):49. doi: 10.1007/s11864-020-00747-7
  • Chandra A, Pius C, Nabeel M, et al. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019 Nov;8(16):7018–7031. doi: 10.1002/cam4.2560
  • Haunschild CE, Tewari KS. Bevacizumab use in the frontline, maintenance and recurrent settings for ovarian cancer. Future Oncol. 2020 Mar;16(7):225–246. doi: 10.2217/fon-2019-0042
  • Coleman RL, Spirtos NM, Enserro D, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med. 2019 Nov 14;381(20):1929–1939. doi: 10.1056/NEJMoa1902626
  • Mini E, Nobili S, Caciagli B, et al. Cellular pharmacology of gemcitabine. Ann Oncol. 2006 May;17(Suppl 5):v7–12.
  • Stebbing J, Gaya A. Pegylated liposomal doxorubicin (Caelyx) in recurrent ovarian cancer. Cancer Treat Rev. 2002 Apr;28(2):121–5. doi: 10.1053/ctrv.2002.0262
  • Nicoletto RE, Ofner CM. 3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022 Mar;89(3):285–311. doi: 10.1007/s00280-022-04400-y
  • Miller RE, Leary A, Scott CL, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020 Dec;31(12):1606–1622.
  • Frenel JS, Kim JW, Aryal N, et al. Efficacy of subsequent chemotherapy for patients with BRCA1/2-mutated recurrent epithelial ovarian cancer progressing on olaparib versus placebo maintenance: post-hoc analyses of the SOLO2/ENGOT ov-21 trial. Ann Oncol. 2022 Oct;33(10):1021–1028.
  • Harter P, Mouret-Reynier MA, Pignata S, et al. Efficacy of maintenance olaparib plus bevacizumab according to clinical risk in patients with newly diagnosed, advanced ovarian cancer in the phase III PAOLA-1/ENGOT-ov25 trial. Gynecol Oncol. 2022 Feb;164(2):254–264.
  • O’Cearbhaill RE, Perez-Fidalgo JA, Monk BJ, et al. Efficacy of niraparib by time of surgery and postoperative residual disease status: a post hoc analysis of patients in the PRIMA/ENGOT-OV26/GOG-3012 study. Gynecol Oncol. 2022 Jul;166(1):36–43.
  • Li H, Liu ZY, Wu N, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020 Jun 20;19(1):107. doi: 10.1186/s12943-020-01227-0
  • Klotz DM, Wimberger P. Overcoming PARP inhibitor resistance in ovarian cancer: what are the most promising strategies? Arch Gynecol Obstet. 2020 Nov;302(5):1087–1102. doi: 10.1007/s00404-020-05677-1
  • Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89–95.
  • FDA-NIH Biomarker Working Group. Diagnostic Biomarker. Silver Spring (MD): Food and Drug Adminstration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Monitoring biomarker. Silver Spring (MD): Food and Drug Adminstration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Response biomarker. Silver Spring MD: Food and Drug Adminstration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Predictive biomarker. Silver Spring MD: Food and Drug Administration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Prognostic biomarker. Silver Spring MD: Food and Drug Administration (US); 2016. BEST (Biomarkers, EndpointS and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Safety biomarker. Silver Spring MD: Food and Drug Administration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. Susceptibility/Risk biomarker. Silver Spring MD: Food and Drug Administration (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource.
  • FDA-NIH Biomarker Working Group. BEST (biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD). Bethesda (MD): National Institutes of Health (US); 2016.
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213–221. doi: 10.1177/1535370217750088
  • Paulovich AG, Whiteaker JR, Hoofnagle AN, et al. The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin Appl. 2008 Oct 1;2(10–11):1386–1402. doi: 10.1002/prca.200780174
  • Parker CE, Borchers CH. Mass spectrometry based biomarker discovery, verification, and validation–quality assurance and control of protein biomarker assays. Mol Oncol. 2014 Jun;8(4):840–58. doi: 10.1016/j.molonc.2014.03.006
  • U.S. Congress. House. Committee on Energy and Commerce. Subcommittee on Health. 21st century cures : examining the regulation of laboratory-developed tests : hearing before the Subcommittee on health of the Committee on Energy and Commerce, House of Representatives, one hundred thirteenth Congress, second session. (WA) DC: U.S. Government Publishing Office. Sep 9, 2014. For sale by the Superintendent of Documents; 2016.
  • Diamandis EP. The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med. 2012 Aug 9;10:87. doi: 10.1186/1741-7015-10-87
  • Riester M, Wei W, Waldron L, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. 2014 Apr 3;106(5). doi: 10.1093/jnci/dju048
  • Hawarden A, Price, M, Russell, B, et al. A three protein signature fails to externally validate as a biomarker to predict surgical outcome in high-grade epithelial ovarian cancer. Plos One. 2023;18(3):e0281798. doi: 10.1371/journal.pone.0281798
  • Lee JY, Kim HS, Suh DH, et al. Ovarian cancer biomarker discovery based on genomic approaches. J Cancer Prev. 2013 Dec;18(4):298–312.
  • Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with Triple-Negative breast cancer. Clin Cancer Res. 2016 Aug 1;22(15):3764–73. doi: 10.1158/1078-0432.CCR-15-2477
  • Saorin A, Di Gregorio E, Miolo G, et al. Emerging role of metabolomics in ovarian cancer diagnosis. Metabolites. 2020 Oct 19;10(10). doi: 10.3390/metabo10100419
  • Chaudhry S, Thomas SN, Simmons GE Jr. Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget. 2022;13:768–783. doi: 10.18632/oncotarget.28241
  • Bast RC Jr., Feeney M, Lazarus H, et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest. 1981 Nov;68(5):1331–7.
  • Ueland FR. A perspective on ovarian cancer biomarkers: past, present and yet-to-come. Diagnostics. 2017 Mar 8;7(1). doi: 10.3390/diagnostics7010014
  • Zhang H, Liu T, Zhang Z, et al. Integrated Proteogenomic Characterization of human high-grade serous ovarian cancer. Cell. 2016 Jul 28;166(3):755–765. doi: 10.1016/j.cell.2016.05.069
  • Bonifacio VDB. Ovarian cancer biomarkers: moving forward in early detection. Adv Exp Med Biol. 2020;1219:355–363.
  • Zhang R, Siu MKY, Ngan HYS, et al. Molecular biomarkers for the early detection of ovarian cancer. Int J Mol Sci. 2022 Oct 10;23(19):12041. doi: 10.3390/ijms231912041
  • Funston G, Mounce LT, Price S, et al. CA125 test result, test-to-diagnosis interval, and stage in ovarian cancer at diagnosis: a retrospective cohort study using electronic health records. Br J Gen Pract. 2021 Jun;71(707):e465–e472.
  • Buys SS, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA. 2011 Jun 8;305(22):2295–303. doi: 10.1001/jama.2011.766
  • Li J, Dowdy S, Tipton T, et al. HE4 as a biomarker for ovarian and endometrial cancer management. Expert Rev Mol Diagn. 2009 Sep;9(6):555–66.
  • Zhang Z, Chan DW. The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidemiol Biomarkers Prev. 2010 Dec;19(12):2995–9. doi: 10.1158/1055-9965.EPI-10-0580
  • Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019 Mar 27;12(1):28. doi: 10.1186/s13048-019-0503-7
  • Coleman RL, Herzog TJ, Chan DW, et al. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses. Am J Obstet Gynecol. 2016 Jul;215(1):82 e1–82 e11.
  • Armstrong DK, Alvarez RD, Backes FJ, et al. NCCN Guidelines(R) insights: ovarian cancer, version 3.2022. J Natl Compr Canc Netw. 2022 Sep;20(9):972–980.
  • Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. Plos One. 2014;9(4):e95192. doi: 10.1371/journal.pone.0095192
  • Deutsch EW, Omenn GS, Sun Z, et al. Advances and utility of the human plasma proteome. J Proteome Res. 2021 Dec 3;20(12):5241–5263. doi: 10.1021/acs.jproteome.1c00657
  • Olink. Home - Olink. 2023 [cited 2023 Jul 10-24]. Available from: https://olink.com/
  • Olink. Olink Explore 3072 Validation Data Results. 2023 [cited 2023 Jul 22-24]. Available from: https://olink.com/resources-support/document-download-center/#:~:text=Validation%20data%20results
  • Olink. Olink Explore 3072 Validation Method & Results. 2023 [cited 2023 Jul 22-24]. Available from: https://olink.com/content/uploads/2022/10/olink-explore-validation-data.pdf
  • Olink. Explore HT - Olink. 2023 [cited 2023 Jul 24]. Available from: https://olink.com/products-services/exploreht/
  • Kobayashi H, Looker HC, Satake E, et al. Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney Int. 2022 Aug;102(2):370–381.
  • Candia J, Daya GN, Tanaka T, et al. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci Rep. 2022 Oct 13;12(1):17147. doi: 10.1038/s41598-022-22116-0
  • Davies MPA, Sato T, Ashoor H, et al. Plasma protein biomarkers for early prediction of lung cancer. EBioMedicine. 2023 Jun 26;93:104686. doi: 10.1016/j.ebiom.2023.104686
  • Luo Y, Wadhawan S, Greenfield A, et al. Somascan proteomics identifies serum biomarkers associated with liver fibrosis in patients with NASH. Hepatol Commun. 2021 May;5(5):760–773.
  • Dammer EB, Ping L, Duong DM, et al. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res Ther. 2022 Nov 17;14(1):174. doi: 10.1186/s13195-022-01113-5
  • Graumann J, Finkernagel F, Reinartz S, et al. Multi-platform affinity proteomics identify proteins linked to metastasis and Immune Suppression in ovarian cancer plasma. Front Oncol. 2019;9:1150. doi: 10.3389/fonc.2019.01150
  • Finkernagel F, Reinartz S, Schuldner M, et al. Dual-platform affinity proteomics identifies links between the recurrence of ovarian carcinoma and proteins released into the tumor microenvironment. Theranostics. 2019;9(22):6601–6617. doi: 10.7150/thno.37549
  • Van Eeckhaut A, Lanckmans K, Sarre S, et al. Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Aug 1;877(23):2198–207. doi: 10.1016/j.jchromb.2009.01.003
  • Kristiansen J. Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry. Clin Chem Lab Med. 2001 Oct;39(10):920–31. doi: 10.1515/CCLM.2001.148
  • Rudzki PJ, Gniazdowska E, Bus-Kwasnik K. Quantitative evaluation of the matrix effect in bioanalytical methods based on LC-MS: a comparison of two approaches. J Pharm Biomed Anal. 2018 Jun 5;155:314–319. doi: 10.1016/j.jpba.2018.03.052
  • Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003 Jul 1;75(13):3019–30. doi: 10.1021/ac020361s
  • Sun J, Wang Z, Yang C. Ion mobility mass spectrometry development and applications. Crit Rev Anal Chem. 2022 Nov;3:1–8. doi: 10.1080/10408347.2022.2139589
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017 Feb;55(2):182–196.
  • Rozanova S, Barkovits K, Nikolov M, et al. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol. 2021;2228:85–116.
  • Keener JE, Zhang G, Marty MT. Native mass spectrometry of membrane proteins. Anal Chem. 2021 Jan 12;93(1):583–597. doi: 10.1021/acs.analchem.0c04342
  • Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. Biochim Biophys Acta Proteins Proteom. 2021 Mar;1869(3):140584. doi: 10.1016/j.bbapap.2020.140584
  • Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007 Oct;389(4):1017–31.
  • Pernemalm M, Lehtio J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics. 2014 Aug;11(4):431–48. doi: 10.1586/14789450.2014.901157
  • Coombes KR. Analysis of mass spectrometry profiles of the serum proteome. Clin Chem. 2005 Jan;51(1):1–2. doi: 10.1373/clinchem.2004.040832
  • Theodorescu D, Mischak H. Mass spectrometry based proteomics in urine biomarker discovery. World J Urol. 2007 Oct;25(5):435–43. doi: 10.1007/s00345-007-0206-3
  • Xiao Q, Zhang F, Xu L, et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev. 2021 Sep;176:113844. doi: 10.1016/j.addr.2021.113844
  • Schuster-Little N, Fritz-Klaus R, Etzel M, et al. Affinity-free enrichment and mass spectrometry analysis of the ovarian cancer biomarker CA125 (MUC16) from patient-derived ascites. Analyst. 2021 Jan 4;146(1):85–94. doi: 10.1039/D0AN01701A
  • Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019 Nov;30(11):2185–2195. doi: 10.1007/s13361-019-02288-2
  • Tao L, McLean JR, McLean JA, et al. A collision cross-section database of singly-charged peptide ions. J Am Soc Mass Spectrom. 2007 Jul;18(7):1232–8.
  • Cohen MJ, Karasek FW. Plasma chromatography - a New dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970;8(6):330–&. doi: 10.1093/chromsci/8.6.330
  • Wu C, Siems WF, Asbury GR, et al. Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry. Anal Chem. 1998 Dec 1;70(23):4929–38. doi: 10.1021/ac980414z
  • Shvartsburg AA, Smith RD. Fundamentals of traveling wave ion mobility spectrometry. Anal Chem. 2008 Dec 15;80(24):9689–99. doi: 10.1021/ac8016295
  • Meier F, Park MA, Mann M. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol & Cell Proteomics. 2021;20:100138. doi: 10.1016/j.mcpro.2021.100138
  • Abdulbagi M, Wang L, Siddig O, et al. D-Amino acids and D-Amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules. 2021 Nov 18;11(11). doi: 10.3390/biom11111716
  • Du S, Wang Y, Alatrash N, et al. Altered profiles and metabolism of l- and d-amino acids in cultured human breast cancer cells vs. non-tumorigenic human breast epithelial cells. J Pharm Biomed Anal. 2019 Feb 5;164:421–429. doi: 10.1016/j.jpba.2018.10.047
  • Charkow J, Rost HL. Trapped ion mobility spectrometry reduces spectral complexity in mass spectrometry-based proteomics. Anal Chem. 2021 Dec 21;93(50):16751–16758. doi: 10.1021/acs.analchem.1c01399
  • Valentine S, Kulchania M, Srebalus Barnes C, et al. Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int J Mass Spectrom. 2001;212(1–3):97–109. doi: 10.1016/S1387-3806(01)00511-5
  • Valentine SJ, Plasencia MD, Liu X, et al. Toward plasma proteome profiling with ion mobility-mass spectrometry. J Proteome Res. 2006 Nov;5(11):2977–84.
  • Li C, Chu S, Tan S, et al. Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. Front Chem. 2021;9:813359. doi: 10.3389/fchem.2021.813359
  • Crowell KL, Baker ES, Payne SH, et al. Increasing confidence of LC-MS identifications by utilizing ion mobility spectrometry. Int J Mass Spectrom. 2013 Nov 15;354-355:312–317. doi: 10.1016/j.ijms.2013.06.028
  • Song G, Chen L, Zhang B, et al. Proteome-wide Tyrosine Phosphorylation analysis Reveals Dysregulated Signaling Pathways in ovarian tumors. Mol & Cell Proteomics. 2019 Mar;18(3):448–460.
  • Abbott KL, Lim JM, Wells L, et al. Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics. 2010 Feb;10(3):470–81.
  • Lienard R, Duez Q, Grayson SM, et al. Limitations of ion mobility spectrometry-mass spectrometry for the relative quantification of architectural isomeric polymers: a case study. Rapid Commun Mass Spectrom. 2020 Aug;34(Suppl 2):e8660.
  • Kirk AT, Bohnhorst A, Raddatz CR, et al. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem. 2019 Sep;411(24):6229–6246.
  • Minegishi Y, Kiyotani K, Nemoto K, et al. Differential ion mobility mass spectrometry in immunopeptidomics identifies neoantigens carrying colorectal cancer driver mutations. Commun Biol. 2022 Aug 18;5(1):831. doi: 10.1038/s42003-022-03807-w
  • Sutinen M, Kontunen A, Karjalainen M, et al. Identification of breast tumors from diathermy smoke by differential ion mobility spectrometry. Eur J Surg Oncol. 2019 Feb;45(2):141–146.
  • Haapala I, Karjalainen M, Kontunen A, et al. Identifying brain tumors by differential mobility spectrometry analysis of diathermy smoke. J Neurosurg. 2019 Jun;14:1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.