3,538
Views
92
CrossRef citations to date
0
Altmetric
Articles

The mathematics teacher’s specialised knowledge (MTSK) model*

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 236-253 | Received 15 Nov 2017, Accepted 21 Apr 2018, Published online: 19 Jul 2018

References

  • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education. New York, NY: Springer. doi: 10.1007/978-1-4614-7966-6
  • Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical futures. Paper presented at the 43rd Jahrestagung der Gesellschaft für Didaktik der Mathematik, Oldenburg, Germany. Retrieved from www.mathematik.uni-dortmund.de/ieem/BzMU/BzMU2009/BzMU2009-Inhalt-fuer-Homepage.htm
  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide. American Educator, 29(1), 14–46.
  • Ball, D. L., & McDiarmird, G. (1990). The subject matter preparation of teachers. In W. R. Houston (Ed.), Handbook of research on teacher education (pp. 437–449). New York, NY: Macmillan.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. doi:10.1177/0022487108324 doi: 10.1177/0022487108324554
  • Bardin, L. (2001). L’analyse de contenu [Content Analysis]. Paris: Presses Universitaires de France.
  • Bass, H. (2017). Designing opportunities to learn mathematics theory-building practices. Educational Studies in Mathematics, 95(3), 229–244. doi: 10.1007/s10649-016-9747-y
  • Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 25–48). New York, NY: Springer.
  • Brousseau, G. (1986). La téorie des situations didactiques. [Theory of Didactic Situations] Grenoble: La Pensée Sauvage.
  • Carrillo, J., & Climent, N. (2011). The development of teachers’ expertise through their analyses of good practice in the mathematics classroom. ZDM, 43(6-7), 915–926. doi: 10.1007/s11858-011-0363-0
  • Charmaz, K. (2014). Constructing grounded theory (2nd ed.). London: Sage.
  • Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, 61(3), 293–319. doi: 10.1007/s10649-006-2372-4
  • Dreher, A., Lindmeier, A., Heinze, A., & Niemand, C. (2018 on line). What kind of content knowledge do secondary mathematics teachers need? A conceptualization taking into account academic and school mathematics. Journal für Mathematik-Didaktik, 37, 131. doi: 10.1007/s13138-018-0127-2
  • Duval R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. [Semiosis and human thought. Semiotic registers and intellectual learning] Berne: Peter Lang.
  • Fernández, C., Callejo, M. L., & Márquez, M. (2014). Conocimiento de los estudiantes para maestro cuando interpretan respuestas de estudiantes de primaria a problemas de división-medida [Knowledge of students for teacher when interpreting responses of primary students to division-measurement problems]. Enseñanza de las Ciencias, 32(3), 407–424. doi: 10.5565/rev/ensciencias.1235
  • Flores, E., & Carrillo, J. (2014). Connecting a mathematics teacher’s conceptions and specialised knowledge through her practice. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), Proceedings of PME38 (Vol. 3, pp. 81–88). Vancouver: PME.
  • Flores, E., Escudero, D. I., & Carrillo, J. (2013). A theoretical review of specialized content knowledge. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of CERME8 (pp. 3055–3064). Antalya: Middle East Technical University, Ankara.
  • Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 225–256). Charlotte, NC: Information Age.
  • Gómez, C., & Cañadas, M. C. (2016). Dificultades de los profesores de matemáticas en formación en el aprendizaje del análisis fenomenológico [Pre-service mathematics teachers’ difficulties in the learning of phenomenological analysis]. Revista Latinoamericana de Investigación en Matemática Educativa, 19(3), 311–334. doi: 10.12802/relime.13.1933
  • Grbich, C. (2013). Qualitative data analysis: An introduction. London: Sage.
  • Hannula, M. (2006). Motivation in mathematics: Goals reflected in emotions. Educational Studies in Mathematics, 63(2), 165–178. doi: 10.1007/s10649-005-9019-8
  • Klein, F. (1908). Elementarmathematik vom höheren Stadpunkte aus. [Elementary mathematics from a superior perspective] Leipzig: B. G. Teubner.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Maloney, E. A., Schaeffer, M. W., & Beilock, S. L. (2013). Mathematics anxiety and stereotype threat: Shared mechanisms, negative consequences and promising interventions. Research in Mathematics Education, 15(2), 115–128. doi: 10.1080/14794802.2013.797744
  • Mamona-Downs, J., & Downs, M. L. N. (2016). Mathematical structure, proof, and definition in advanced mathematical thinking. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 239–256). New York, NY: Routledge.
  • Martinovic, D., & Manizade, A. G. (2018 first online). The challenges in the assessment of knowledge for teaching geometry. ZDM, 59, 389. doi: 10.1007/s11858-018-0934-4
  • Muñoz-Catalán, M. C., Carrillo, J., & Climent, N. (2010). Mathematics teacher change in a collaborative environment: To what extent and how. Journal of Mathematics Teacher Education, 13(5), 425–439. doi: 10.1007/s10857-010-9157-5
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Reston, VA: Author.
  • Neubrand, M. (2018 first online). Conceptualizations of professional knowledge for teachers of mathematics. ZDM, 95, 3. doi: 10.1007/s11858-017-0906-0
  • Robert, A., & Robinet, J. (1996). Prise en compte du méta en didactique des mathématiques [Taking meta into account in mathematics education]. Recherches en didactique des mathématiques, 16(2), 145–176. [Research in mathematics education].
  • Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing primary mathematics teaching. Reflecting on practice with the knowledge quartet. London: SAGE. doi: 10.4135/9781446279571
  • Santos, L., & Cai, J. (2016). Curriculum and assessment. In A. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 153–185). Rotterdam: Sense Publishers.
  • Scheiner, T., Montes, M.A., Godino, J.D., Carrillo, J., & Pino-Fan, L.R. (2017 online first). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 37, 270. doi: 10.1007/s10763-017-9859-6
  • Schoenfeld, A. H. (2010). How we think. New York: Routledge.
  • Schoenfeld, A., & Kilpatrick, J. (2008). Toward a theory of proficiency in teaching mathematics. In T. Wood, & D. Tirosh (Eds.), Tools and processes in mathematics teacher education (pp. 321–354). London: Sense Publishers.
  • Schwab, J. (1978). Education and the structure of the disciplines. In I. Westbury, & N. Wilkof (Eds.), Science, curriculum and liberal education: Selected essays (pp. 229–272). Chicago, IL: University of Chicago Press.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. doi: 10.3102/0013189X015002004
  • Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499–511. doi: 10.1007/s10857-008-9089-5
  • Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics education. In A. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 315–351). Rotterdam: Sense Publishers.
  • Thompson, A. G. (1992). Teacher’s beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook on mathematics teaching and learning (pp. 127–146). Reston, VA: NCTM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.