640
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Auditory brainstem and middle latency responses to 1 kHz tones in noise-masked normally-hearing and sensorineurally hearing-impaired adults

Respuestas auditivas de tallo cerebral y de latencia media a tonos de 1 kHz en normoyentes con enmascaramiento por ruido y en adultos con impedimentos auditivos sensorineurales

&
Pages 331-344 | Received 27 Apr 2004, Published online: 07 Jul 2009

References

  • American National Standards Institute. 1996. American National Standard Specification for Audiometers. ANSI S3.6-1996. New York:ANSI.
  • Arle J.E., Kim D.O. Simulations of cochlear nucleus neural circuitry: Excitatory-inhibitory response-area types I-IV. J Acoust Soc Am 1991; 90(6)3106–21
  • Barajas J.J., Exposito M., Fernandez R., Martin L.J. Middle latency response to a 500-Hz tone pip in normally-hearing and in hearing-impaired subjects. Scand Audiol 1988; 17(1)21–26
  • Beattie R.C., Boyd R.L. Early/middle evoked potentials to tone bursts in quiet, white noise and notched noise. Audiology 1985; 24: 406–419
  • Beattie R.C., Garcia E., Johnson A. Frequency-specific auditory brainstem responses in adults with sensorineural hearing loss. Audiology 1996; 35: 194–203
  • Beattie R.C., Thielen K.M., Franzone D.L. Effects of signal-to-noise ratio on the auditory brainstem response to tone bursts in notch noise and broadband noise. Scand Audiol 1994; 23: 47–56
  • Berlin C.I., Li Li M.D., Hood L.J., Morlet T., Rose K., et al. Auditory Neuropathy/Dys-Synchrony: After the diagnosis then what?. Seminars in Hearing 2002; 23(3)209–214
  • Bilak M., Kim J., Potashner S., Bohne B., Morest D. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Exp Neuro 1997; 147: 256–268
  • Burkard R., Hecox K. The effect of broadband noise on the human brainstem auditory response. I. Rate and intensity effects. J Acoust Soc Am 1983a; 74(4)1204–1213
  • Burkard R., Hecox K. The effect of broadband noise on the human brainstem auditory evoked response. II. Frequency specificity. J Acoust Soc Am 1983b; 74(4)1214–1223
  • Burkard R., Palmer A. Responses of chopper units in the ventral cochlear nucleus of the anaesthetised guinea pig to clicks-in-noise and click trains. Hear Res 1997; 110: 234–250
  • Cacace A.T., McFarland D.J. Middle-latency auditory evoked potentials: Basic issues and potential applications. Handbook of Clinical Audiology5th Edition, J. Katz. Lippencott, Williams & Wilkins, Philadelphia 2002; 349–377
  • Carhart R., Jerger J. Preferred method for clinical determination of pure tone thresholds. Journal of Speech and Hearing Disorders 1959; 24: 330–345
  • Costalupes J.A., Young E.D., Gibson D.J. Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol 1984; 51: 1326–1344
  • Davis H. An active process in cochlear mechanisms. Hear Res 1983; 9: 79–90
  • Delgutte B. Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers. J Acoust Soc Am 1990; 87: 791–809
  • Don M., Ponton C.W., Eggermont J.J., Kwong B. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies. J Acoust Soc Am 1998; 104(4)2280–2289
  • Eggermont J.J. Narrow-band AP latencies in normal and recruiting human ears. J Acoust Soc Am 1979; 65(2)463–470
  • Firszt J.B., Chambers R.D., Kraus N., Reeder R. Neurophysiology of cochlear implant users I: Effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear Hear 2002; 23(6)502–515
  • Fowler C.G., Durrant J.D. The effects of peripheral hearing loss on the auditory brainstem response. Principles and Applications in Auditory Evoked Potentials, J.T. Jacobson. Allyn and Bacon, Needham Heights 1994; 240–250
  • Galambos R., Hecox K. Clinical applications of the auditory brainstem response. Otolaryngology Clinics of North America 1978; 11: 709–722
  • Gerken G.M. Central auditory temporal processing: Alterations produced by factors involving the cochlea. Effects of Noise on the Auditory System, A. Dancer, D. Henderson, R. Salvi, R. Hamernik. Mosby, Philadelphia 1992; 146–155
  • Gerken G.M. Alteration of central auditory processing of brief stimuli: A review and a neural model. J Acoust Soc Am 1993; 93(4)2038–2049
  • Gerken G.M., Hesse P.S., Wiorkowski J.J. Auditory evoked response in control subjects and in patients with problem-tinnitus. Hear Res 2001; 157(1–2)52–64
  • Gibson D.J., Young E.D., Costalupes J.A. Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei. J Neurophysiol 1985; 53: 940–958
  • Gorga M., Kaminski J., Beauchaine K., Jesteadt W. Auditory brainstem responses to tone bursts in normally hearing subjects. Journal of Speech and Hear Res 1988; 31: 87–97
  • Gott P., Hughes E. Effect of noise masking on the brain-stem and middle-latency auditory evoked potentials: central and peripheral components. Electroencephalography and clinical Neurophysiology 1989; 74: 131–138
  • Greenwood D., Goldberg J. Responses of neurons in the cochlear nucleus to variations in noise bandwidth and to tone-noise combinations. J Acoust Soc Am 1970; 47: 1022–1040
  • Gumnit R.J., Grossman R.G. Potentials evoked by sound in the auditory cortex of the cat. Am J Physiol Cell Physiol 1961; 200: 1219–1225
  • Hall, J.W. 1992. Handbook of Auditory Evoked Responses, (First ed.). Needham Heights: Allyn and Bacon.
  • Hashimoto I., Mashiko T., Yoshikawa K., Mizuta T., Imada T., et al. Neuromagnetic measurements of the human primary auditory response. Electroencephalography and clinical Neurophysiology 1995; 96: 348–356
  • Hawkins D.B., Walden B.E., Montgomery A., Prosek R.A. Description and validation of an LDL procedure designed to select SSPL90. Ear Hear 1987; 8: 162–169
  • Heil P. Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol 1997a; 77(5)2616–2641
  • Heil P. Auditory cortical onset responses revisited. II. Response strength. J Neurophysiol 1997b; 77(5)2642–2660
  • Heil P., Irvine D. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 1997; 78(5)2438–2454
  • Heil P., Rajan R., Irvine D.R. Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear Res 1994; 76(1–2)188–202
  • Hendler T., Squires N.K., Moore J.K., Coyle P.K. Auditory evoked potentials in multiple sclerosis: correlation with magnetic resonance imaging. Journal of Basic Clinical Physiology and Pharmacology 1996; 7(3)245–278
  • Hood L.J. Estimating auditory function with auditory evoked potentials. The Hearing Journal 1995; 48(10)10, 32–42
  • Huynh H., Feldt L.S. Conditions under which the mean square ratios in repeated measurements designs have exact F distributions. Journal of the American Statistical Association 1970; 65: 1582–1589
  • Hyde M.L. The slow vertex potential: Properties and clinical applications. Principles and Applications in Auditory Evoked Potentials, J.T. Jacobson. Allyn and Bacon, Needham Heights 1994; 179–218
  • Kaga M., Kon K., Uno A., Horiguchi T., Yoneyama H., et al. Auditory perception in auditory neuropathy: clinical similarity with auditory verbal agnosia. Brain Development 2002; 24(3)197–202
  • Kavanagh K.T., Domico W.D., Crews P.L., McCormick V.A. Comparison of the intrasubject repeatability of auditory brain stem and middle latency response elicited in young children. Ann Otol Rhinol Laryngol 1988; 97(3)264–271
  • Kavanagh K.T., Harker L.A., Tyler R.S. Auditory brainstem and middle latency response. I. Effects of response filtering and waveform identification. II. threshold responses to a 500-Hz tone pip. Ann Otol Rhinol Laryngol (Supplement 103) 1984; 93: 2–12
  • Kraus N., McGee T. Clinical applications of the middle latency response. J Am Acad Audiol 1990; 1: 130–133
  • Kraus N., McGee T., Stein L. The auditory middle latency response. Principles and Applications in Auditory Evoked Potentials, J.T. Jacobson. Allyn and Bacon, Needham Heights 1994; 155–178
  • Kraus N., Özdamar Ö., Stein L., Reed N. Absent auditory brainstem response: Peripheral hearing loss or brainstem dysfunction?. Laryngoscope 1984; 94: 400–406
  • Kraus N., Smith D.I., Reed N.L., Stein L.K., Cartee C. Auditory middle latency responses in children: effects of age and diagnostic category. Electroencephalography and clinical Neurophysiology 1985; 62: 343–351
  • Kuriki S., Nogai T., Hirata Y. Cortical sources of middle latency responses of auditory evoked magnetic field. Hear Res 1995; 92: 47–51
  • Laukli E., Fjermedal O., Mair I.W.S. Low-frequency auditory brainstem response threshold. Scand Audiol 1988; 17: 171–178
  • Lee J.S.M., McPherson B., Yuen K.C.P., Wong L.L.N. Screening for auditory neurophathy in a school for hearing impaired children. International Journal Pediatric Otorhinolaryngology 2001; 61: 39–46
  • Legatt A.D., Arezzo J.C., Vaughan H.G. The anatomic and physiologic bases of brain stem auditory evoked potentials. Neurol Clin 1988; 6: 681–704
  • Lichtenstein V., Stapells D.R. Frequency-specific identification of hearing loss using transient-evoked otoacoustic emissions to clicks and tones. Hear Res 1996; 98(1–2)125–36
  • Lockwood A., Salvi R., Coad M., Arnold S., Wack D., et al. The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kHz tones at varied intensities. Cereb Cortex 1999; 9(1)65–76
  • Madell J., Goldstein R. Relation between loudness and the amplitude of the early components of the averaged electroencephalic response. Journal of Speech and Hear Res 1972; 15: 131–141
  • McFarland W.H., Vivion M.C., Goldstein R. Middle components of the AER to tone-pips in normally-hearing and hearing-impaired subjects. Journal of Speech and Hear Res 1977; 20: 781–798
  • McGee T., Kraus N. Auditory development reflected by the middle latency response. Ear Hear 1996; 17(5)419–429
  • Melcher J., Guinan J., Knudson I., Kiang N. Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes. Hear Res 1996; 93: 28–51
  • Møller A.R. Neural generators of auditory evoked potentials. Principles and Applications in Auditory Evoked Potentials, J.T. Jacobson. Allyn and Bacon, Needham Heights 1994; 23–46
  • Munnerley G.M., Greville K.A., Purdy S.C., Keith W.J. Frequency-specific auditory brainstem responses-relationship to behavioural thresholds in cochlear-impaired adults. Audiology 1991; 30: 25–32
  • Musiek F.E., Geurkink N.A. Auditory brainstem and middle latency evoked response sensitivity near threshold. Ann Otol Rhinol Laryngol 1981; 90: 236–240
  • Nousak J.M., Stapells D.R. Frequency specificity of the auditory brain stem response to bone-conducted tones in infants and adults. Ear Hear 1992; 13(2)87–95
  • Oates P., Stapells D.R. Frequency specificity of the human auditory brainstem and middle latency responses to brief tones: I. High-pass noise masking. J Acoust Soc Am 1997a; 102: 3597–3608
  • Oates P., Stapells D.R. Frequency specificity of the human auditory brainstem and middle latency responses to brief tones: II. Derived response analyses. J Acoust Soc Am 1997b; 102: 3609–3619
  • Owen G.A., Burkard R. Ipsilateral, contralateral, and binaural masking effects on the human brain–stem auditory-evoked responses to click stimuli. J Acoust Soc Am 1991; 89: 1760–1767
  • Özdamar Ö., Kraus N. Auditory middle-latency responses in humans. Audiology 1983; 22: 34–49
  • Palmer, A.R. 1995. Neural signal processing. In. B. C. J. Moore, (Ed.),Hearing, (, pp., 75–121. ). New York: Academic Press.
  • Phillips D.P. Stimulus intensity and loudness recruitment: Neural correlates. J Acoust Soc Am 1987; 82(1)1–12
  • Phillips D.P. Neural representation of sound amplitude in the auditory cortex: effects of noise masking. Behavioral Brain Research 1990; 37: 197–214
  • Phillips D.P., Burkard R. Response magnitude and timing of auditory response initiation in the inferior colliculus of the awake chinchilla. J Acoust Soc Am 1999; 105(5)2731–2737
  • Phillips D.P., Cynader M.S. Some neural mechanisms in the cat's auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear Res 1985; 18: 87–102
  • Picton T., Alain C., Woods D., John M., Scherg M., et al. Intracerebral sources of human auditory–evoked potentials. Audiol Neurootol 1999; 4: 64–79
  • Picton T.W., Ouellette J., Hamel G., Smith A.D. Brainstem evoked potentials to tonepips in notched noise. J Otolaryngol 1979; 8: 289–314
  • Purdy S.C., Kelly A.S., Davies M.G. Auditory brainstem response, middle latency response, and late cortical evoked potentials in children with learning disabilities. J Am Acad Audiol 2002; 13(7)367–382
  • Qui C., Salvi R., Ding D., Burkard R. Inner hair cell loss leads to enhanced response amplitude in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res 2000; 139: 153–171
  • Rees A., Palmer A.R. Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. J Acoust Soc Am 1988; 83: 1488–1498
  • Rhode W.S., Greenberg S. Lateral suppression and inhibition in the cochlear nucleus of the cat. J Neurophysiol 1994; 71(2)493–514
  • Ruggero M.A. Physiology of the auditory nerve. The Mammalian Auditory Pathway: Neurophysiology, A.N. Popper, R.R. Fay. Springer-Verlag, New York 1992; 3493
  • Ruggero M.A. Cochlear delays and traveling waves: Comments on ‘Experimental look at cochlear mechanics’ [A. Dancer, Audiology 1992; 31:301–312]. Audiology 1994; 33: 131–142
  • Ruggero M.A., Robles L., Rich N.C. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 1992; 68(4)187–1099
  • Salvi, R., Henderson, D., & Hamernik, R. 1983. Physiological bases of sensorineural hearing loss. In. J. V. Tobias & E. D. Schubert, (Eds.), Hear Res and Theory, (, Vol. 2, pp., 173–231. ). New York: Academic Press.
  • Saunders J.C., Cohen Y.E., Szymko Y.M. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: A five year update. J Acoust Soc Am 1991; 90: 136–146
  • Scherg M., Volk S.A. Frequency specificity of simultaneously recorded early and middle latency auditory evoked potentials. Electroencephalography and Clinical Neurophysiology 1983; 56: 443–452
  • Sininger Y.S., Abdala C., Cone-Wesson B. Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hear Res 1997; 104(1–2)27–38
  • Smith R.L. Adaptation, saturation and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 1979; 65: 166–178
  • Stapells D.R. Studies in evoked potential audiometry. Unpublished doctoral dissertation, University of Ottawa, Ottawa. 1984
  • Stapells D.R. Frequency-specific evoked potential audiometry in infants. A Sound Foundation Through Early Amplification: Proceedings of an International, R.C. Seewald. Phonak AG, Conference Basel 2000a; 13–31
  • Stapells D.R. Threshold estimation by the tone-evoked ABR: A literature meta-analysis. Journal of Speech-Language Pathology and Audiology 2000b; 24(2)74–83
  • Stapells D.R., Durieux-Smith A., Picton T.W. Electrophysiologic measures of frequency-specific auditory function. Principles and Applications in Auditory Evoked Potentials2nd ed, J.T. Jacobson. Allyn and Bacon, Needham Heights 1994
  • Stapells D.R., Galambos R., Costello J.A., Makeig S. Inconsistency of auditory middle latency and steady-state responses in infants. Electroencephalography and clinical Neurophysiology 1988; 71: 289–295
  • Stapells D.R., Gravel J.S., Martin B.A. Thresholds for auditory brain stem responses to tones in notched noise from infants and young children with normal hearing or sensorineural hearing loss. Ear Hear 1995; 16: 361–371
  • Stapells D.R., Picton T.W. Technical aspects of brainstem evoked potential audiometry using tones. Ear Hear 1981; 2(1)20–9
  • Stapells D.R., Picton T.W., Durieux-Smith A. Evoked potential audiometry: An evaluation of eight techniques. ASHA 1984b; 26(10)75
  • Stapells D.R., Picton T.W., Durieux-Smith A., Edwards C.G., Moran L.M. Thresholds for short-latency auditory evoked potentials to tones in notched noise in normally-hearing and hearing-impaired subjects. Audiology 1990; 29: 262–274
  • Starr A., Picton T.W., Sininger Y.S., Hood L.J., Berlin C.I. Auditory neuropathy. Brain 1996; 119: 741–753
  • Suzuki J.-I., Kodera K., Yamada O. Brainstem response audiometry in newborns and hearing-impaired infants. Sensory Evoked Potentials. I. An International Conference on Standards for Auditory Brainstem Response (ABR) Testing, A. Starr, C. Rosenberg, M. Don, H. Davis. CRS Amplifon, Milan 1984; 85–93
  • Suzuki T., Hirabayashi M., Kobayashi K. Effects of analog and digital filtering on auditory middle latency response in adults and young children. Ann Otol Rhinol Laryngol 1984; 93(3)267–270
  • Suzuki T., Hirai Y., Horiuchi K. Simultaneous recording of the early and middle components of auditory electric response. Ear Hear 1981; 2: 276–282
  • Suzuki T., Horiuchi K. Effect of high-pass filter on auditory brain stem responses to tone pips. Scand Audiol 1977; 6: 123–126
  • Syka J., Rybalko N., Popelar J. Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear Res 1994; 78(2)158–168
  • Thornton A.R.D., Mendel M.I., Anderson C.V. Effects of stimulus frequency and intensity on the middle components of the averaged auditory electroencephalic response. Journal of Speech and Hear Res 1977; 20: 81–94
  • Tlumak A.I. Electrophysiological responses in individuals with auditory neuropathy. Seminars in Hearing 2002; 23(3)183–191
  • Versino M., Bergamaschi R., Romani A., Banfi P., Callieco R., et al. Middle latency auditory evoked potentials improve the detection of abnormalities along auditory pathways in multiple sclerosis patients. Electroencephalography and clinical Neurophysiology 1992; 84(3)296–299
  • Wang J., Ding D., Salvi R.J. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 2002; 168: 238–249
  • Wang J., Salvi R.J., Powers N. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. J Neurophysiol 1996; 75(1)171–183
  • Whiting K.A., Martin B.A., Stapells D.R. The effects of broadband noise masking on cortical event-related potentials to speech sounds /ba/ and /da/. Ear Hear 1998; 19(3)218–231
  • Wu C.-Y., Stapells D.R. Pure-tone masking profiles for human auditory brainstem and middle latency responses to 500-Hz tones. Hear Res 1994; 78: 169–174
  • Wu, C.-Y.,& Stapells, D.R., (submitted). Detection of auditory brainstem and middle latency responses to clicks and brief tones by experienced human observers.
  • Yamada O., Kodera K., Yagi T. Cochlear processes affecting wave V latency of the auditory evoked brainstem response: A study of patients with sensory hearing loss. Scand Audiol 1979; 8: 67–70
  • Yamada O., Yamane H., Kodera K. Simultaneous recordings of the brain stem. response and the frequency-following response. Otolaryngol 1977; 6: 90–118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.