1,202
Views
81
CrossRef citations to date
0
Altmetric
Original Article

Unimodal and cross-modal plasticity in the ‘deaf’ auditory cortex

Pages 479-493 | Received 12 Mar 2007, Published online: 07 Jul 2009

References

  • Abeles M., Goldstein M.H., Jr. Functional architecture in cat primary auditory cortex: Columnar organization and organization according to depth. J Neurophysiol 1970; 33(1)172–187
  • Ahissar M., Hochstein S. The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci. 2004; 8(10)457–464
  • Aramakis V.B., Hsieh C.Y., Leslie F.M., Metherate R. A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. J Neurosci 2000; 16: 6106–6116
  • Bakin J.S., Weinberger N.M. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci USA 1996; 93(20)11219–24
  • Bavelier D., Neville H.J. Cross-modal plasticity: Where and how?. Nat Rev Neurosci 2002; 3(6)443–452
  • Benson D.L., Colman D.R., Huntley G.W. Molecules, maps and synapse specificity. Nat Rev Neurosci 2001; 2(12)899–909
  • Bonham B.H., Cheung S.W., Godey B., Schreiner C.E. Spatial organization of frequency response areas and rate/level functions in the developing AI. J Neurophysiol 2004; 91(2)841–854
  • Brosch M., Selezneva E., Scheich H. Non-auditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. J Neurosci 2005; 25(29)6797–6806
  • Brugge J.F., Orman S.S., Coleman J.R., Chan J.C., Phillips D.P. Binaural interactions in cortical area AI of cats reared with unilateral atresia of the external ear canal. Hear Res 1985; 20(3)275–287
  • Brugge J.F., Reale R.A., Wilson G.F. Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hear Res 1988; 34(2)127–140
  • Busby P.A., Tong Y.C., Clark G.M. Electrode position, repetition rate, and speech perception by early-deafened and late-deafened cochlear implant patients. J Acoust Soc Am 1993; 93: 1058–1067
  • Busby P.A., Tong Y.C., Clark G.M. Psychophysical studies using a multiple-electrode cochlear implant in patients who were deafened early in life. Audiology 1992; 31: 95–111
  • Calvert G.A., Bullmore E.T., Brammer M.J., Campbell R., Williams S.C., et al. Activation of auditory cortex during silent lipreading. Science 1997; 276(5312)593–596
  • Changeux J.P., Danchin A. Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 1976; 264(5588)705–712
  • Clancy B., Darlington R.B., Finlay B.L. Translating developmental time across mammalian species. Neuroscience 2001; 105(1)7–17
  • Conel J.L. 1939–1967, The Post-natal Development of Human Cerebral Cortex. Vol. I–VIII Cambridge, MA: Harvard University Press.
  • Cragg B.G. The development of synapses in kitten visual cortex during visual deprivation. Exp Neurol 1975; 46(3)445–451
  • Crair M.C., Gillespie D.C., Stryker M.P. The role of visual experience in the development of columns in cat visual cortex. Science 1998; 279(5350)566–570
  • DeCasper A.J., Fifer W.P. Of human bonding: Newborns prefer their mothers' voices. Science 1980; 208(4448)1174–1176
  • Dehaene-Lambertz G., Dehaene S., Hertz-Pannier L. Functional neuroimaging of speech perception in infants. Science 2002; 298(5600)2013–2015
  • Diamond D.M., Weinberger N.M. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behav Neurosci 1984; 98(2)89–210
  • Easterbrook M.A., Kisilevsky B.S., Muir D.W., Laplante D.P. Newborns discriminate schematic faces from scrambled faces. Can J Exp Psychol 1999; 53(3)231–241
  • Eggermont J.J. Differential maturation rates for response parameters in cat primary auditory cortex. Auditory Neuroscience 1996; 2: 309–327
  • Eisenberg L.S., Shannon R.V., Martinez A.S., Wygonski J., Boothroyd A. Speech recognition with reduced spectral cues as a function of age. J Acoust Soc Am 2000; 107(5)2704–2710
  • Elliott L.L. Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. J Acoust Soc Am 1979; 66(3)651–653
  • Elliott L.L., Connors S., Kille E., Levin S., Ball K., et al. Children's understanding of monosyllabic nouns in quiet and in noise. J Acoust Soc Am 1979; 66(1)12–21
  • Fine I., Finney E.M., Boynton G.M., Dobkins K.R. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J Cog Neurosci 2005; 17(10)1621–1637
  • Finney E.M., Fine I., Dobkins K.R. Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 2001; 4(12)1171–1173
  • Flanagan J.L., Rabiner R.L. Speech Synthesis. Dowden, Hutchinson & Ross, Stroudsburg 1973
  • Formisano E., Kim D.S., DiSalle F., vandeMoortele P.F., Ugurbil K., et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 2003; 40(4)859–869
  • Fryauf-Bertschy H., Tyler R.S., Kelsay D.M., Gantz B.J., Woodworth G.G. Cochlear implant use by prelingually deafened children: the influences of age at implant and length of device use. J Speech Lang Hear Res 1997; 40(1)183–199
  • Giraud A.L., Price C.J., Graham J.M., Frackowiak R.S.J. Functional plasticity of language-related brain areas after cochlear implantation. Brain 2001; 124: 1307–1316
  • Giraud A.L., Truy E., Frackowiak R. Imaging plasticity in cochlear implant patients. Audiol Neuro Otol 2001; 6(6)381–393
  • Goldin-Meadow S. The Resilience of Language. Psychology Press, New York, Hove 2003
  • Gummer A.W., Mark R.F. Patterned neural activity in brainstem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). Neuroreport 1994; 5(6)685–688
  • Harrison R.V., Nagasawa A., Smith D.W., Stanton S., Mount R.J. Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hear Res 1991; 54(1)11–19
  • Hartmann R., Kral A. Central responses to electrical stimulation. Cochlear Implants: Auditory Prostheses and Electric Hearing, F.G. Zeng, A.N. Popper, R.R. Fay. Springer, New York 2004; 213–285
  • Hartmann R., Shepherd R.K., Heid S., Klinke R. Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 1997; 112(1–2)115–133
  • Heid S. 1998. Morphologische Befunde am peripheren und zentralen auditorischen System der kongenital gehörlosen weißen Katze. J.W. Goethe University, Frankfurt am Main.
  • Heid S., Hartmann R., Klinke R. A model for prelingual deafness, the congenitally deaf white cat: Population statistics and degenerative changes. Hear Res 1998; 115(1–2)101–112
  • Hillier L., Hewitt K.L., Morrongiello B.A. Infants’ perception of illusions in sound localization: Reaching to sounds in the dark. J Exp Child Psychol 1992; 53(2)159–179
  • Hochstein S., Ahissar M. View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 2002; 36(5)791–804
  • Horton J.C., Hocking D.R. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 1996; 16(5)1791–1807
  • Howard M.A., Volkov I.O., Abbas P.J., Damasio H., Ollendieck M.C., et al. A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res 1996; 724: 260–264
  • Hubka P., Kral A., Klinke R. Input desynchronization and impaired columnar activation in deprived auditory cortex revealed by independent component analysis. Plasticity and Signal Representation in the Auditory System, J. Syka, M.M. Merzenich. Springer Verlag, Berlin 2004; 161–165
  • Hultcrantz M., Snyder R., Rebscher S., Leake P. Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats. Hear Res 1991; 54: 272–280
  • Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387(2)167–178
  • Ito K., Momose T., Oku S., Ishimoto S., Yamasoba T., et al. Cortical activation shortly after cochlear implantation. Audiol Neurootol 2004; 9(5)282–293
  • Jakobson R., Halle M. Fundamentals of Language. Mouton, The Hague 1956
  • Kalisman N., Silberberg G., Markram H. The neocortical microcircuit as a tabula rasa. Proc Nat Acad Sci USA 2005; 102(3)880–885
  • Kamke M.R., Brown M., Irvine D.R. Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. J Comp Neurol 2003; 459(4)355–367
  • Kilgard M.P., Merzenich M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 1998; 279(5357)1714–1718
  • Kisilevsky B.S., Pang L., Hains S.M. Maturation of human fetal responses to airborne sound in low- and high-risk fetuses. Early Hum Dev 2000; 58(3)179–195
  • Klinke R., Kral A., Heid S., Tillein J., Hartmann R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 1999; 285(5434)1729–1733
  • Kral A., Hartmann R., Heid S., Tillein J. Responses to binaural cues in the primary auditory cortex of congenitally deaf cats. FENS Abstr 2006a; 3: A180.8
  • Kral A., Hartmann R., Klinke R. Recruitment of the auditory cortex in congenitally deaf cats. Reprogramming the Cerebral Cortex, S.G. Lomber, J.J. Eggermont. Oxford University Press, Oxford 2006; 191–210
  • Kral A., Hartmann R., Mortazavi D., Klinke R. Spatial resolution of cochlear implants: The electrical field and excitation of auditory afferents. Hear Res 1998; 121(1–2)11–28
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. Hearing after congenital deafness: Central auditory plasticity and sensory deprivation. Cereb Cortex 2002; 12(8)797–807
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. Delayed maturation and sensitive periods in the auditory cortex. Audiol Neuro-Otol 2001; 6(6)346–362
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 2000; 10: 714–726
  • Kral A. & Sabol J. 1989. Fonetika a fonológia Slovenské pedagogické nakladatelstvo, Bratislava.
  • Kral A., Schroder J.H., Klinke R., Engel A.K. Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 2003; 153(4)605–613
  • Kral A., Tillein J. Brain plasticity under cochlear implant stimulation. Adv Otolaryngol 2006; 64: 89–108
  • Kral A., Tillein J., Heid S., Hartmann R., Klinke R. Gross synaptic currents in A1 demonstrate delayed and altered synaptogenesis in deafness. Assoc Res Otolaryngol 2005a; 28: 358
  • Kral A., Tillein J., Heid S., Hartmann R., Klinke R. Post-natal cortical development in congenital auditory deprivation. Cereb Cortex 2005b; 15: 552–562
  • Kral A., Tillein J., Heid S., Klinke R., Hartmann R. Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 2006b; 157: 283–313
  • Lakatos P., Chen C.M., O'Connell M.N., Mills A., Schroeder C.E. Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 2007; 53(2)279–292
  • Larkum M.E., Zhu J.J., Sakmann B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 1999; 398(6725)338–341
  • Leake P.A., Hradek G.T., Snyder R.L. Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 1999; 412(4)543–562
  • Lee D.S., Lee J.S., Oh S.H., Kim S.K., Kim J.W., et al. Deafness: Cross-modal plasticity and cochlear implants. Nature 2001; 409(6817)149–150
  • Levanen S., Jousmaki V., Hari R. Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol 1998; 8(15)869–872
  • Li Y., Fitzpatrick D., White L.E. The development of direction selectivity in ferret visual cortex requires early visual experience. Nat Neurosci 2006; 9(5)676–681
  • Liegeois-Chauvel C., Musolino A., Badier J.M., Marquis P., Chauvel P. Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 1994; 92(3)204–214
  • Lippe W.R. Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res 1995; 703: 205–213
  • Lippe W.R. Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 1994; 14: 1486–1495
  • Llinas R.R., Leznik E., Urbano F.J. Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: A voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 2002; 99(1)449–454
  • Locke J.L. A theory of neurolinguistic development. Brain Lang 1997; 58(2)265–326
  • Mair I.W.S. Hereditary deafness in the white cat. Acta Otolaryngologica 1973; Suppl. 314: 1–53
  • Mehler J., Jusczyk P., Lambertz G., Halsted N., Bertoncini J., Amiel-Tison C. A precursor of language acquisition in young infants. Cognition 1988; 29(2)143–178
  • Mitani A., Shimokouchi M. Neuronal connections in the primary auditory cortex: An electrophysiological study in the cat. J Comp Neurol 1985; 235: 417–429
  • Mitani A., Shimokouchi M., Ftoh K., Nomura S., Mizuno N., et al. Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. J Comp Neurol 1985; 235: 430
  • Morrongiello B.A., Rocca P.T. Infants' localization of sounds in the horizontal plane: Effects of auditory and visual cues. Child Development 1987; 58: 918–927
  • Naito Y., Hirano S., Okazawa H., Takahashi H., Ishizu K., et al. Central auditory processing of speech in cochlear implant users demonstrated by positron emission tomography. Cochlear Implant and Related Sciences Update 1997; 52: 19–23
  • Nakahara H., Zhang L.I., Merzenich M.M. Specialization of primary auditory cortex processing by sound exposure in the critical period. Proc Natl Acad Sci USA 2004; 101(18)7170–7174
  • Nishimura H., Doi K., Iwaki T., Hashikawa K., Oku N., et al. Neural plasticity detected in short- and long-term cochlear implant users using PET. Neuroreport 2000; 11(4)811–815
  • Nishimura H., Hashikawa K., Doi K., Iwaki T., Watanabe Y., et al. Sign language'heard' in the auditory cortex. Nature 1999; 397(6715)116
  • Oray S., Majewska A., Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 2004; 44(6)1021–1030
  • Pallas S.L., Roe A.W., Sur M. Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. J Comp Neurol 1990; 298(1)50–68
  • Pascalis O., Scott L.S., Kelly D.J., Shannon R.W., Nicholson E., et al. Plasticity of face processing in infancy. Proc Natl Acad Sci USA 2005; 102(14)5297–5300
  • Petitto L.A., Katerelos M., Levy B.G., Gauna K., Tetreault K., et al. Bilingual signed and spoken language acquisition from birth: Implications for the mechanisms underlying early bilingual language acquisition. J Child Lang 2001; 28(2)453–496
  • Petitto L.A., Zatorre R.J., Gauna K., Nikelski E.J., Dostie D., et al. Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci USA 2000; 97(25)13961–13966
  • Ponton C.W., Eggermont J.J. Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiol Neuro Otol 2001; 6(6)363–380
  • Raggio M.W., Schreiner C.E. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. J Neurophysiol 1994; 72(5)2334–2359
  • Raggio M.W., Schreiner C.E. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long- term deafness. J Neurophysiol 1999; 82(6)3506–3526
  • Raizada R.D.S., Grossberg S. Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cereb Cortex 2003; 13(1)100–113
  • Reale R.A., Imig T.J. Tonotopic organization in auditory cortex of the cat. J Comp Neurol 1980; 192: 265–291
  • Rebillard G., Carlier E., Rebillard M., Pujol R. Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors. Brain Res 1977; 129(1)162–164
  • Rebillard G., Rebillard M., Pujol R. Factors affecting the recording of visual-evoked potentials from the deaf cat primary auditory cortex. Brain Res 1980; 188: 252–254
  • Rebillard M., Pujol R., Rebillard G. Variability of the hereditary deafness in the white cat. II. Histology. Hear Res 1981; 5: 189–200
  • Rebillard M., Rebillard G., Pujol R. Variability of the hereditary deafness in the white cat. I. Physiology. Hear Res 1981; 5: 179–188
  • Robertson D., Irvine D.R. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 1989; 282(3)456–471
  • Roe A.W., Pallas S.L., Kwon Y.H., Sur M. Visual projections routed to the auditory pathway in ferrets-receptive fields of visual neurons in primary auditory cortex. J Neurosci 1992; 12: 3651–3664
  • Rübsamen R., Schafer M. Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri-Lankan rufous horseshoe bat, Rhinolophus-Rouxi. J Comp Physiol A 1990; 167: 757–769
  • Saada A.A., Niparko J.K., Ryugo D.K. Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res 1996; 736(1–2)315–328
  • Sakai M., Suga N. Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils. Proc Nat Acad Sci USA 2002; 99(10)7108–7112
  • Schiff-Myers N. Hearing children of deaf parents. Language Development in Exceptional Circumstances, D. Bishop, K. Mogford. Lawrence Erlbaum Associates, Hillsdale 1993; 47–61
  • Schreiner C.E., Raggio M.W. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. J Neurophysiol 1996; 75(3)1283–1300
  • Sharma A., Dorman M., Spahr A., Todd N.W. Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol 2002; 111(5)38–41
  • Sharma A., Dorman M.F., Kral A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 2005; 203(1–2)134–143
  • Sharma A., Dorman M.F., Spahr A.J. Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 2002a; 13(10)1365–1368
  • Sharma A., Dorman M., Spahr A.J. A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear Hear 2002b; 23(6)532–539
  • Shepherd R.K., Hardie N.A. Deafness-induced changes in the auditory pathway: Implications for cochlear implants. Audiol Neuro Otol 2001; 6(6)305–318
  • Shuler M.G., Bear M.F. Reward timing in the primary visual cortex. D. Bishop & K. Mogford, (eds. Science 2006; 311(5767)1606–1609
  • Snyder R.L., Rebscher S.J., Cao K., Leake P.A., Kelly K. Chronic intracochlear electrical stimulation in the neonatally deafened cat.1. Expansion of central representation. Hear Res 1990; 50: 7–34
  • Snyder R.L., Rebscher S.J., Leake P.A., Kelly K., Cao K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. 2. Temporal properties of neurons in the inferior colliculus. Hear Res 1991; 56: 246–264
  • Sohmer H. & Freeman S. 2001. The pathway for the transmission of external sounds into the fetal inner ear. J Basic Clin Physiol Pharmacol, 12, 2 Suppl, 91–99.
  • Sohmer H., Perez R., Sichel J.Y., Priner R., Freeman S. The pathway enabling external sounds to reach and excite the fetal inner ear. Audiol Neurootol 2001; 6(3)109–116
  • Stewart D.L., Starr A. Absence of visually influenced cells in auditory cortex of normal and congenitally deaf cats. Exp Neurol 1970; 28(3)525–528
  • Suga N., Gao E., Zhang Y., Ma X., Olsen J.F. The corticofugal system for hearing: Recent progress. Proc Natl Acad Sci USA 2000; 97(22)11807–11814
  • Trune D.R. Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: Number, size, and density of its neurons. J Comp Neurol 1982; 209: 409–424
  • Vicario-Abejon C., Owens D., McKay R., Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 2002; 3(12)965–974
  • Walsh E.J., McGee J. Post-natal development of auditory nerve and cochlear nucleus neuronal responses in kittens. Hear Res 1987; 28(1)97–116
  • Werker J.F., Tees R.C. Developmental changes across childhood in the perception of non-native speech sounds. Can J Psychol 1983; 37(2)278–286
  • Werker J.F., Tees R.C. Phonemic and phonetic factors in adult cross-language speech perception. J Acoust Soc Am 1984b; 75(6)1866–1878
  • Werker J.F., Tees R.C. Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development 1984a; 7: 49–63
  • Winfield D.A. The postnatal-development of synapses in the different laminae of the visual-cortex in the normal kitten and in kittens with eyelid suture. Develop Brain Res 1983; 9(2)155–169
  • Winfield D.A. The post-natal development of synapses in the visual cortex of the cat and the effects of eyelid closure. Brain Res 1981; 206(1)166–171
  • Wong R.O. Retinal waves and visual system development. Annu Rev Neurosci 1999; 22: 29–47
  • Woolsey C.N., Walzl E.M. Topical projections of nerve fibers from local regions of the cochlea to the cerebral cortex. Bull Johns Hopkins Hosp 1942; 71: 315–343
  • Zhang L.I., Bao S., Merzenich M.M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 2001; 4(11)1123–1130
  • Zhang L.I., Bao S., Merzenich M.M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc Natl Acad Sci USA 2002; 99(4)2309–2314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.