1,546
Views
157
CrossRef citations to date
0
Altmetric
Original Article

Deprivation-induced cortical reorganization in children with cochlear implants

, , &
Pages 494-499 | Received 20 Mar 2007, Published online: 07 Jul 2009

References

  • Albrecht R., Suchodoletz W., Uwer R. The development of auditory evoked dipole source activity from childhood to adulthood. Clin Neurophysiol 2000; 111: 2268–76
  • Antonini A., Stryker M.P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci 1993; 13: 3549–73
  • Armstrong B.A., Neville H.J., Hillyard S.A., Mitchell T.V. Auditory deprivation affects processing of motion, but not color. Brain Res Cogn Brain Res 2002; 14: 422–34
  • Baldwin R.L. 2002. Functional reallocation of the auditory cortex in individuals who are deaf (Doctoral dissertation). District of Columbia, Gallaudet University.
  • Bavelier D., Brozinsky C., Tomann A., Mitchell T., Neville H., Liu G. Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J Neurosci 2001; 21: 8931–42
  • Bavelier D., Neville H.J. Cross-modal plasticity: wWhere and how?. Nat Rev Neurosci 2002; 3: 443–52
  • Bavelier D., Tomann A., Hutton C., Mitchell T., Corina D., Liu G., Neville H. Visual attention to the periphery is enhanced in congenitally deaf individuals. J Neurosci 2000; 20: RC93
  • Bolz J., Castellani V. How do wiring molecules specify cortical connections?. Cell Tissue Res 1997; 290: 307–14
  • Bourgeois J.P., Goldman-Rakic P.S., Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 1994; 4: 78–96
  • Castellani V., Bolz J. Membrane-associated molecules regulate the formation of layer-specific cortical circuits. Proc Natl Acad Sci USA 1997; 94: 7030–5
  • Cunningham J., Nicol T., Zecker S., Kraus N. Speech-evoked neurophysiologic responses in children with learning problems: Development and behavioral correlates of perception. Ear Hear 2000; 21: 554–68
  • Darian-Smith C., Gilbert C.D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 1994; 368: 737–40
  • Eggermont J.J. On the rate of maturation of sensory evoked potentials. Electroencephalogr Clin Neurophysiol 1988; 70: 293–305
  • Eggermont J.J., Ponton C.W. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Otolaryngol 2003; 123: 249–52
  • Fenwick P.B., Brown D., Hennesey J. The visual evoked response to pattern reversal in ‘normal’ 6–11-year-old children. Electroencephalogr Clin Neurophysiol 1981; 51: 49–62
  • Fine I., Finney E.M., Boynton G.M., Dobkins K.R. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J Cogn Neurosci 2005; 17: 1621–37
  • Fine I., Finney E.M., Dobkins K.R. Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 2001; 4: 1171–3
  • Gilley P.M., Sharma A. & Dorman M. 2006. Reorganization of auditory and visual cortical pathways during auditory deprivation. 2nd Shanghai International Conference on Physiological Biophysics: Audition and Vision. Shanghai, China, Chinese Academy of Sciences.
  • Gilley P.M., Sharma A., Dorman M., Martin K. Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol 2005; 116: 648–57
  • Gomes H., Dunn M., Ritter W., Kurtzberg D., Brattson A., et al. Spatiotemporal maturation of the central and lateral N1 components to tones. Brain Res Dev Brain Res 2001; 129: 147–55
  • Huttenlocher P.R. Synaptic density in human frontal cortex: Developmental changes and effects of aging. Brain Res 1979; 163: 195–205
  • Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–78
  • Kilgard M.P., Merzenich M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 1998; 279: 1714–8
  • Kilgard M.P., Pandya P.K., Vazquez J.L., Rathbun D.L., Engineer N.D., et al. Spectral features control temporal plasticity in auditory cortex. Audiol Neurootol 2001; 6: 196–202
  • Klinke R., Hartmann R., Heid S., Tillein J., Kral A. Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation. Audiol Neurootol 2001; 6: 203–6
  • Kral A., Hartmann R., Heid S., Tillein J., Klinke R. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 2000; 10: 714–26
  • Kral A., Hartmann R., Heid S., Tillein J., Klinke R. Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 2001; 6: 346–62
  • Kral A., Hartmann R., Heid S., Tillein J., Klinke R. Hearing after congenital deafness: Central auditory plasticity and sensory deprivation. Cereb Cortex 2002; 12: 797–807
  • Kral A., Tillein J. Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol 2006; 64: 89–108
  • Kral A., Heid S., Tillein J., Hartmann R., Klinke R. Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 2005; 15: 552–62
  • Kraus N., McGee T. Clinical implications of primary and nonprimary pathway contributions to the middle latency response generating system. Ear Hear 1993; 14: 36–48
  • Lazeyras F., Boex C., Sigrist A., Seghier M.L., Cosendai G., et al. Functional MRI of auditory cortex activated by multisite electrical stimulation of the cochlea. Neuroimage 2002; 17: 1010–7
  • Lee D.J., Cahill H.B., Ryugo D.K. Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held. J Neurocytol 2003; 32: 229–43
  • Lee D.S., Lee J.S., Oh S.H., Kim S.K., Kim J.W., et al. Cross-modal plasticity and cochlear implants. Nature 2001; 409: 149–50
  • MacSweeney M., Woll B., Cambell R., Mcguire P.K., David A.S., et al. Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 2002; 125: 1583–93
  • Makela J.P., Hari R. Neuromagnetic auditory evoked responses after a stroke in the right temporal lobe. Neuroreport 1992; 3: 94–6
  • Makela J.P., Mcevoy L. Auditory evoked fields to illusory sound source movements. Exp Brain Res 1996; 110: 446–54
  • Mcgee T., Kraus N., Comperatore C., Nicol T. Subcortical and cortical components of the MLR generating system. Brain Res 1991; 544: 211–20
  • Mooney R.D., Nikoletseas M.M., King T.D., Savage S.V., Weaver M.T., et al. Structural and functional consequences of neonatal deafferentation in the superficial layers of the hamster's superior colliculus. J Comp Neurol 1992; 315: 398–412
  • Moore J.K., Guan Y.L. Cytoarchitectural and axonal maturation in human auditory cortex. J Assoc Res Otolaryngol 2001; 2: 297–311
  • Onofrj M., Thomas A., Iacono D., D'Andreamatteo G., Paci C. Age-related changes of evoked potentials. Neurophysiol Clin 2001; 31: 83–103
  • Pang E.W., Taylor M.J. Tracking the development of the N1 from age three to adulthood: an examination of speech and non-speech stimuli. Clin Neurophysiol 2000; 111: 388–97
  • Ponton C.W., Don M., Eggermont J.J., Waring M.D., Masuda A. Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear Hear 1996; 17: 430–7
  • Ponton C.W., Eggermont J.J. Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 2001; 6: 363–80
  • Ponton C.W., Don M., Eggermont J.J., Kwong B. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol 2000; 111: 220–36
  • Quartz S.R. & Sejnowski T.J. 1997. The neural basis of cognitive development: A constructivist manifesto. Behav Brain Sci, 20, 537–56; discussion 556–96.
  • Rakic P., Bourgeois J.P., Eckenhoff M.F., Zecevic N., Goldman-Rakic P.S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 1986; 232: 232–5
  • Roland P.S., Tobey E.A., Devous M.D. SR. Preoperative functional assessment of auditory cortex in adult cochlear implant users. Laryngoscope 2001; 111: 77–83
  • Ryugo D.K., Pongstaporn T., Huchton D.M., Niparko J.K. Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. J Comp Neurol 1997; 385: 230–44
  • Sadato N., Okada T., Honda M., Matsuki K., Yoshida M., et al. Cross-modal integration and plastic changes revealed by lip movement, random-dot motion and sign languages in the hearing and deaf. Cereb Cortex 2005; 15: 1113–22
  • Sanes J.R., Yamagata M. Formation of lamina-specific synaptic connections. Curr Opin Neurobiol 1999; 9: 79–87
  • Schorr E.A., Fox N.A., van Wassenhove V., Knusden E.I. Auditory-visual fusion in speech perception in children with cochlear implants. Proc Natl Acad Sci USA 2005; 102: 18748–50
  • Seghier M.L., Boex C., Lazeyras F., Sigrist A., Pellizone M. FMRI evidence for activation of multiple cortical regions in the primary auditory cortex of deaf subjects users of multichannel cochlear implants. Cereb Cortex 2005; 15: 40–8
  • Sharma A., Dorman M.F. Central auditory development in children with cochlear implants: Clinical implications. Adv Otorhinolaryngol 2006; 64: 66–88
  • Sharma A., Dorman M.F., Kral A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 2005; 203: 134–43
  • Sharma A., Dorman M.F., Spahr A., Todd N.W. Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol Suppl 2002a; 189: 38–41
  • Sharma A., Dorman M.F., Spahr A.J. A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 2002b; 23: 532–9
  • Sharma A., Dorman M.F., Spahr A.J. Rapid development of cortical auditory evoked potentials after early cochlear implantation. Neuroreport 2002c; 13: 1365–8
  • Sharma A., Kraus N., McGee T.J., Nicol T.G. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 1997; 104: 540–5
  • Tonnquist-Uhlen I., Ponton C.W., Eggermont J.J., Kwong B., Don M. Maturation of human central auditory system activity: the T-complex. Clin Neurophysiol 2003; 114: 685–701
  • Valverde F. Structural changes in the area striata of the mouse after enucleation. Exp Brain Res 1968; 5: 274–92
  • Wallace C.S., Kilman V.L., Withers G.S., Greenough W.T. Increases in dendritic length in occipital cortex after four days of differential housing in weanling rats. Behav Neural Biol 1992; 58: 64–8
  • Wunderlich J.L., Cone-Wesson B.K., Shepherd R. Maturation of the cortical auditory evoked potential in infants and young children. Hear Res 2006; 212: 185–202
  • Zhang L.I., Bao S., Merzenich M.M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 2001; 4: 1123–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.