203
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Protein Variations in Thlaspi Caerulescens Populations from Metalliferous and Non-Metalliferous Soils

, , &
Pages 805-819 | Published online: 24 Jun 2010

REFERENCES

  • Asemaneh , T , Ghaderian , S M , Crawford , S A , Marshall , A T and Baker , A JM . 2006 . Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae) . Planta , 255 : 193 – 202 .
  • Assunção , A GL , Da Costa Marins , P , De Folter , S , Vooijs , R , Schat , H and Aarts , M GM . 2001 . Elevated expression of metal transporter genes in three accessions of metal hyperaccumulator Thlaspi caerulescens. . Plant Cell Environ , 24 : 217 – 226 .
  • Assunção , A GL , Schat , H and Aarts , M GM . 2003a . Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants . New Phytol , 159 : 411 – 419 .
  • Assunção , A GL , Ten Bookum , W M , Nelissen , H JM , Vooijs , R , Schat , H and Ernst , W HO . 2003b . Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types . New Phytol , 159 : 411 – 419 .
  • Baker , A JM , McGrath , S P , Reeves , D R and Smith , J AC . 2000 . “ Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils ” . Pytoremediation of contaminated soils and water Edited by: Terry , N and Banuelos , G . 171 – 188 . Boca Raton, FL : CRC press LLC .
  • Basic , N , Salamin , N , Keller , C , Gallard , N and Besnard , G . 2006 . Cadmium hyperaccumulatin and genetic differentiation of Thlaspi caerulescens populations . Biochem System Ecol , 34 : 667 – 677 .
  • Becher , M , Talke , I N , Krall , L and Krämer , U . 2004 . Cross-species miroarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri . Plant J , 37 : 251 – 268 .
  • Boominathan , R and Doran , P M . 2002 . Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii . New Phytol , 156 : 205 – 215 .
  • Brooks , R R , Shaw , S and Marfil , A A . 1981 . The chemical form and physiological function of nickel in some Iberian Alyssum species . Physiol Plant , 51 : 167 – 170 .
  • Buckhout , T J , Yang , T JW and Schmidt , W . 2009 . Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analysis . BMC Genomics , 10 : 147 – 163 .
  • Clemens , S , Palmgren , M G and Kraemer , U . 2002 . A long way ahead: understanding and engineering plant metal accumulation . Trends in Plant Sci , 7 : 309 – 315 .
  • Cobbet , C . 2003 . Heavy metals and plants—model system and hyperaccumulator . New Phytol , 159 : 289 – 293 .
  • Escarrè , J , Lefebvre , C , Gruber , W , Leblanc , M , Lepart , J , Riviere , Y and Delay , B . 2000 . Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implication for phytoremediation . New Phytol , 145 : 429 – 437 .
  • Freeman , J L , Persans , M W , Nieman , K , Albrect , C , Peer , W , Pickering , I J and Salt , D E . 2004 . Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators . Plant Cell , 16 : 2176 – 2191 .
  • Gajewska , E , Skłodowska , M , Słaba , M and Mazur , J . 2006 . Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots . Biol Plant , 50 : 653 – 659 .
  • Gelhaye , E , Navrot , N , Macdonald , I K , Rouhier , N , Raven , E L and Jacquot , J.-P . 2006 . Ascorabate peroxidise-thioredoxin interaction . Photosynth Res , 89 : 193 – 200 .
  • Gerhardt , K E , Huang , X-D , Glick , B R and Greenberg , B M . 2009 . Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges . Plant Sci , 176 : 20 – 30 .
  • Glass , D.J . 2000 . “ Economic potential of phytoremediation ” . Phytoremediation of toxic metals: Using plants to clean up the environment Edited by: Raskin , I and Ensley , B D . 15 – 31 . New York : John Wiley .
  • Ingle , R A , Smith , J A and Sweetlove , L J . 2005 . Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum . Bio Metals , 18 : 627 – 641 .
  • Jhee , E M , Boyd , R S and Eubanks , M D . 2005 . Nickel hyperacumulation as an elemental defence of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode . New Phytol , 168 : 331 – 344 .
  • Jiménez-Ambriz , G , Petit , C , Bourrié , I , Dubois , S , Olivieri , I and Ronce , O . 2006 . Life history variation in the heavy metal tolerant plant Thlapsi caerulescens growing in a network of contaminated and non-contaminated sites in southern France: role of gene flow, selection, and phenotypic plasticity . New Phytol , 173 : 199 – 215 .
  • Kazakou , E , Dimitrakopoulos , P GM , Baker , A J , Reeves , R D and Troumbis , A Y . 2008 . Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level . Biol Rev , 83 : 495 – 508 .
  • Krämer , U , Pickering , I J , Prince , R C , Raskin , I and Salt , D E . 2000 . Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species . Plant Physiol , 122 : 1343 – 1353 .
  • Küpper , H , Lombi , E , Zhao , F J , Wieshaman , G and McGrath , S P . 2001 . Cellular compartmentation of nickel in the hypeaccumulators Alyssum lesbiacum, Alyssum bertolonii, and Thlaspi goesingense . J Exp Bot , 365 : 2291 – 2300 .
  • Macnair , M.R . 2003 . The hyperaccumulation of metals by plants . Adv Botanical Res , 40 : 63 – 105 .
  • Marchand , C , Le Marechal , P , Meyer , Y , Miginiac-Maslow , M , Issakidis-Bourguet , E and Decottignies , P . 2004 . New targets of Arabidopsis thioredoxins revealed by proteomic analysis . Proteomics , 4 : 2696 – 2706 .
  • Marmiroli , N . 2009 . The potential of genetically modified plants for phytoremediation . FEBS J , 276 : 67
  • Marmiroli , N and McCutcheon , S C . 2003 . “ Making phytoremediation a successful technology ” . Phytoremediation: Transformation and Control of Contaminants Edited by: McCutcheon , S C and Schnoor , J L . 75 – 107 . Hoboken, NJ : Wiley-Interscience, Inc .
  • Marschner , H . 1995 . “ Mineral nutrition of higher plants ” . In , 2nd ed , 889 London, , UK : Academic Press .
  • Martens , S N and Boyd , R . 2002 . The defensive role of hyperaccumulation by plants: a field experiment . Americ J Bot , 86 : 998 – 1003 .
  • Molitor , M , Dechamps , C , Gruber , W and Meerts , P . 2005 . Thlaspi caerulescens on nonmetalliferous soil in Luxemburg: ecological niche and genetic variation in mineral element composition . New Phytol , 165 : 503 – 512 .
  • Murashige , T and Skoog , F . 1962 . A revised medium for rapid growth and bioassays with tobacco tissue cultures . Physiol Plant , 15 : 473 – 497 .
  • Palomino , M , Kennedy , P G and Simms , E.L . 2007 . Nickel hyperaccumulation as an anti-herbivore trait: considering the role of tolerance to damage . Plant and Soil , 293 : 189 – 195 .
  • Persans , M W , Nieman , K and Salt , D . 2001 . Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense . Proc Nat Acad Sci , 98 : 9995 – 10000 .
  • Pirondini , A , Visioli , G , Malcevschi , A and Marmiroli , N . 2006 . A 2-D liquid-phase chromatography analysis in plant tissues . J Chromatogr B , 833 : 91 – 100 .
  • Pollard , A J , Powell , K D , Harper , F A and Smith , J AC . 2002 . The genetic basis of metal hyperaccumulation in plants . Crit Rev Plant Sci , 21 : 539 – 566 .
  • Poschenrieder , C , Tolrà , R and Barceló , J . 2006 . Can metals defend plants against biotic stress? . Trends in Plant Sci , 11 : 288 – 295 .
  • Reeves , R.D . 1992 . “ Hyperaccumulation of nickel by serpentine plants ” . The vegetation of ultramafic (serpentine) soils, Proceedings of the First International Conference on Serpentine Ecology Edited by: Baker , A JM , Proctor , J and Reeves , R D . 253 – 277 . Andover : Intercept Ltd .
  • Reeves , R D and Baker , A JM . 2000 . “ Phytoremediation of toxic metals: using plants to clean up the environment ” . Metal accumulating plants Edited by: Raskin , I and Ensley , B D . 193 – 229 . New York, Wiley
  • Rigola , D , Fiers , M , Vurro , E and Aarts , M.G.M . 2006 . The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis . New Phytol , 170 : 753 – 766 .
  • Sagner , S , Kneer , R , Wanner , G , Cosson , J P , Deus-Neumann , B and Zenk , M H . 1998 . Hyperaccumulation, complexation and distribution of nickel in Serbetia acuminate . Phytochem , 47 : 339 – 347 .
  • Schat , H , Llugany , M and Bernhard , R . 2000 . “ Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes ” . Phytoremediation of contaminated soils & water Edited by: Terry , N and Banuelos , G . 171 – 188 . Boca Raton, FL : CRC press .
  • Schmidt , A and Buckhout , T J . 1997 . The response of tomato roots (Lycopersicon esculentum Mill.) to iron deficiency stress: alterations in the pattern of protein synthesis . J Exp Bot , 48 : 1909 – 1918 .
  • Stephan , U W , Schmidke , I , Stephan , V W and Scholz , G . 1996 . The nicotianamine molecules is made-to-measure for complexation of metal micronutrients in plants . Biometals , 9 : 84 – 90 .
  • Taylor , S I and Macnair , M . 2006 . Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae) . New Phytol , 169 : 505 – 514 .
  • Tuomainen , M H , Nunan , N , Lehesranta , S J , Tervahauta , A I , Hassinen , V H , Schat , H , Koistinen , K M , Auriola , S , McNicol , J and Karenlampi , S . 2006 . Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions . Proteomics , 6 : 3696 – 3706 .
  • Vacchina , V , Mari , S , Crernic , P , Marqués , L , Pianelli , K , Schaumlöffel , D , Lebrun , M and Lobinski , R . 2003 . Speciation of nickel in hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectroscopy and electrospray MS/MS assisted by cloning using yeast complementation . Anal Chem , 75 : 2740 – 2745 .
  • van de Mortel , J E , Almar Villanueva , L , Schat , H , Kwekkeboom , J , Coughlan , S , Perry , D , Moerland , P D , van Themaat , E VL , Koornneef , M and Aarts , M GM . 2006 . Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens . Plant Physiol , 142 : 1127 – 1147 .
  • van de Mortel , J E , Schat , H , Moerland , P D , van Themaat , E VL , van der Ent , S , Blankestijn , H , Ghandilyan , A , Tsiatsiani , S and Aarts , M GM . 2008 . Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens . Plant Cell Environ , 31 : 301 – 324 .
  • von Wiren , N , Klair , S , Bansal , S , Briat , J F , Khodr , H and Sihori , T . 1999 . Nicotianamine chelates both FeIII and FeII. Implication for metal transport in plants . Plant Physiol , 119 : 1107 – 1114 .
  • Weber , M , Harada , E , Vess , C , Roepenack-Lahaye , E V and Clemens , S . 2004 . Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotinamine synthase, a ZIP transporter and other genes as potential hyperaccumulation factors . Plant J , 37 : 269 – 281 .
  • Yamazaki , D , Motohashi , K , Kasama , T , Hara , Y and Hisabori , T . 2004 . Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana . Plant Cell Physiol , 45 : 18 – 27 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.