252
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains

&

References

  • Al-Dhaibani A-N, EL-Nakhlawy FS, Alsolaimani SG, Almehmadi FM. 2013. Phytoremediation of Cadmium Contaminated Soil by Sunflower. Australian J Basic Appl Sci 7:888–894.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881.
  • Eriksson J, Ledin S. 1999. Changes in phytoavailibility and concentration of cadmium in soil following long term Salix cropping. Air Soil Pollut 114:171–184.
  • Felix H. 1997. Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants. Z Pflanzenernähr Bodenk 160:525–529.
  • Greger M, Landberg T. 1997 Use of willow clones with high Cd accumulating properties in phytoremediation of agricultural soils with elevated Cd levels. In: Prost R, Proceedings of 3rd Int. Congress on the Biogeochemistry of Trace Elements, Paris, May 1995. Versailles (France): INRA Editions. p. 505–511.
  • Greger M, Landberg T. 1999. Use of willow in phytoextraction. Int J Phytorem 1:115–123.
  • Greger M, Landberg T. 2003. Improving removal of metals from soil by Salix. In: Gobran G, Lepp N. 7th International Congress on Biogeochemistry of Trace Elements, Uppsala June 2003. (Uppsala) Sweden: SLU service/Repro. p. 146–147.
  • Greger M, Landberg T, Berg B. 2001. Salix clones with different properties to accumulate heavy metals for production of biomass. (Stockholm) Sweden: Akademitryck AB, Edsbruk.
  • Greger M, Löfstedt M. 2004. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44:501–507.
  • Hammer D, Keller C. 2003. Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149.
  • Hellstrand S, Landner L. 1998. Cadmium in fertilisers, soil, crops and food: the Swedish situation. In: Cadmium Exposure in the Swedish Environment. KEMI report, No 1/98.
  • Järup L. 2003. Hazards of heavy metal contamination. Br Med Bull 68:167–182.
  • Keller C. 2006. Factors limiting efficiency of phytoextraction at multi-metal contaminated sites. In: Morel J-L, Echevarria G, Goncharova M, editors. Phytoremediation of Metal Contaminated Soils. Vol. 17, Nato Science Series: IV. Earth and Environmental Sciences. Dordrecht (Germany) Springer. p. 241–266.
  • Landberg T, Greger M. 1994. Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy contaminated land? In: Aronsson P, Perttu K. Willow Vegetation Filters for Municipal Wastewaters and Sludges. A biological purification system. Proc. of a study tour, conference and work shop in Sweden, 5–10 June 1994. Ultuna, Uppsala, Rapport 50, Avd. f. Skoglig intensivodling, SLU. (Uppsala) Sweden: SLU Info/Repro. p. 133–144.
  • Loohart G, Bean S. 1995. Separation and Characterization of Wheat protein fractions by high performance liquid chromatography. Anal Techniq Instrument 72:527–532.
  • Mandal A, Purakayatha TJ, Patra AK, Sanyal SK. 2012. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield. Int J Phytorem 14:621–628.
  • Marschner H. 1995. Mineral Nutrition of Higher Plants. London (UK): Academic Press.
  • Puschenreiter M, Wittstock F, Friesl-Hanl W, Wenzel WW. 2013. Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays. Plant Soil 369:531541.
  • Riddel-Black D. 1994. Heavy metal uptake by fast growing willow species. In: Aronsson P, Perttu K. Willow Vegetation Filters for Municipal Wastewaters and Sludges. A biological purification system. Proc. of a study tour, conference and work shop in Sweden, 5–10 June 1994. Ultuna, Uppsala, Rapport 50, Avd. f. Skoglig intensivodling, SLU. Uppsala (Sweden): SLU Info/Repro. p. 145–151.
  • Song X, Hu X, Ji P, Li Y, Chi G, Song Y. 2012. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla. Bull Environ Contam Toxicol 88:623–626.
  • Vangronsveld J, Cunningham SD. 1998. Introduction to the concepts. In: Vangronsveld J, Cunningham SD, editors. Metal-Contaminated Soils: In situ Inactivation and Phytorestoration, Georgetown (Texas): Springer. p 1–15.
  • Wieshammer G, Unterbrunner R, Garcia TB, Zivkovic MF, Puschenreiter M, Wenzel WW. 2007. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264.
  • Ye W-L, Khan MA, McGrath SP, Zhao F-J. 2011a. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159:3739–3743.
  • Ye W-L, Khan MA, McGrath SP, Zhao F-J. 2011b. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers repeated harvest. Int J Phytorem 14:978–995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.