368
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium

, , &

References

  • Ali H, Khan E, Sajad M. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881.
  • Andrade Lima LR, Bernardez LA. 2011. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. J Hazard Mater 189:692–699.
  • Calderón V, Maldonado M. 2008. Dónde se usa el plomo. Contaminación e intoxicación por plomo. 1st ed. México. p. 18.
  • Coya B, Marañon E, Sastre H. 2000. Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resour Conserv Recy 29:291–300.
  • de Araújo J, do Nascimento C. 2010. Phytoextraction of lead from soil from a battery recycling site: The use of citric acid and NTA. Water Air Soil Poll 211:113–120.
  • Díaz G, Azcón C, Honrubia M. 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249.
  • Evelin H, Giri B, Kapoor R. 2013. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23:71–86.
  • Faé G, Furlanetto T, Wada K. 2011. Reduction in toxicity and generation of slag in secondary lead process. J Clean Prod 19:1096–1103.
  • Flores J, Albert L. 2004. Environmental Lead in Mexico, 1990–2002. Rev Environ Contam Toxicol 181:37–109.
  • Fomina M, Alexander J, Colpaert J, Add G. 2005. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866.
  • Garg N, Aggarwal N. 2012. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26.
  • Gaur A, Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metals contaminated soils. Curr Sci India 86(4):528–534.
  • Giordan C, Cecchi S, Zanchi C. 2005. Phytoremediation of soil polluted by nickel using agricultural crops. Environmental Management 36(5):675–681.
  • González M, Carrillo R, Wright S, Nichols K. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323.
  • Gosling P, Hodge A, Goodlass G, Bending G. 2006. Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35.
  • Hai-Hong G, Fu-Ping L, Yong-Li X, Qiang Y, Yu-Qian G, Xue-Tao Y. 2013. Potential use of sedum spectabile inoculated with Glomus mosseae in phytostabilization of Lead/Zinc tailings. App Mech Mat 295W22;298:1543–1546.
  • Hajiboland R, Aliasgharzadeh N, Laiegh S, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327.
  • Hildebrandt U, Regvar M, Bothe H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146.
  • Jabeen R, Ahmad A, Iqbal M. 2009. Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms. Bot Rev 75:339–364.
  • Jensen D, Holm P, Christensen T. 2000. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities. Waste Manage Res 18(1):52–63.
  • Joner E, Leyval C. 1997. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360.
  • Kessler M. 1988. Applied Spectrum Analysis. In Kessler M, editor. Liquid Scintillation Analysis. IL: PACKARD. Publication No. 169–3052.
  • Kormanik P, Bryan W, Schults R. 1979. Endomycorrhizal inoculation during transplanting improves growth of vegetatively propagated yellow poplar. Plant Propagator 23:4–5.
  • Lazzaro A, Schulin R, Widmer F, Frey B. 2006. Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soils. Sci Total Environ 371:110–124.
  • Lebeau T, Braud A, Jézéquel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ Pollut 153:497–522.
  • Leung H, Wu F, Cheung K, Ye Z, Wong M. 2010. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J Hazard Mater 181:497–507.
  • Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:39–153.
  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH. 2003. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853.
  • Manahan SE. 2005. Heavy metal water pollutants. In: Green Chemistry. 2nd ed. Columbia (MO): Chem Char Research Inc. p. 175.]
  • Mauricio A, Peña-Cabriales JJ, Maldonado M. 2010. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. Int J Phytoremediat 12(4):317–34.
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501.
  • Penpolcharoen M. 2005. Utilization of secondary lead slag as construction material. Cement Concrete Res 35:1050–1055.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161.
  • Prasad M. 2007. Sunflower (Helinathus annuus L.) a potential crop for environmental industry. Helia 30(46):167–174.
  • Quintanar-Escorza MA, González-Martínez MT, Navarro L, Maldonado M, Arévalo B, Calderón-Salinas JV. 2007. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers. Toxicol Appl Pharm 220:1–8.
  • Rajkumara M, Sandhya S, Prasad M, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574.
  • Ribeiro de Souza SC, López de Andrade SA, Anjos de Souza L, Schiavinato MA. 2012. Lead tolerance and phytoremediation potential of brazilian leguminous tree species at the seedling stage. J Environ Manage 110:299–307.
  • SEMARNAT. 2000. Especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana 021-RECNAT-2000.
  • SEMARNAT. 2005. Criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, berilio, cadmio, cromo hexavalente, mercurio, níquel, plomo, selenio, talio y vanadio. Secretaría de Medio Ambiente y Recursos Naturales. Proyecto de Norma Oficial Mexicana: NOM-147-SEMARNAT/SSA1-2004.
  • Sharma A, Sharma H. 2013. Role of vesicular arbuscular mycorrhiza in the mycoremediation of heavy toxic metals from soil. Int J Life Sc Bt & Pharm Res 2(3):418–431.
  • Smith S, Read D. 2008. Mycorrhizal symbiosis. 3rd ed. London (UK): Academic Press. p. 11–145.
  • Sudová R, Jurkiewicz A, Turnau K, Vosátka M. 2007. Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–78.
  • U.S. EPA. 2007. Inductively coupled plasma-atomic emission spectrometry: USEPA United States Environmental Protection Agency. 6010C method. p. 1–34.
  • Vera JA, Peña JJ, Herrera L, Nieto F, Salgado S, Palma DJ, Ortíz A, Pastrana L, Barrón S, Grageda OA, Fragoso C. 2006. Improving agriculture productivity in the savannah of Tabasco state, Mexico. I. Management of maize and sorghum production systems. In: International Atomic Energy (IAEA), editors. Management practices to improving sustainable crop production in tropical acid soils. 1st ed. Vienna (Austria): IAEA Proceedings Series. p. 255–272.
  • Vogel K, Pongrac P, Kump P, Necemer M, Regvar M. 2006. Colonization of a Zn, Cd and Pb hyperaccumulator by Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371.
  • Wang F, Lin X, Yin R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232.
  • Zapata F. 1990. Applications of nuclear techniques in soil fertility and plant nutrition studies. In: International Atomic Energy Agency (IAEA), editors. Manual use of isotopes and radiation methods in soil and water management and crop nutrition. Vienna (Austria): IAEA Training Course Series No. 14.
  • Zhou J. 1999. Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biot 51:686–693.
  • Zhuang P, Zou B, Li N, Li Z. 2009. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environ Geochem Hlth 31:707–715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.