205
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

The Tolerance and Accumulation of Miscanthus Sacchariflorus (maxim.) Benth., an Energy Plant Species, to Cadmium

, , &

References

  • Arduini I, Ercoli L, Mariotti M, Masoni A. 2006. Response of Miscanthus to toxic cadmium applications during the period of maximum growth. Environ Exp Bot 55(1):29–40.
  • Arduini I, Masoni A, Ercoli L, Mariotti M. 2003. Growth and cadmium uptake of Miscanthus sinensis as affected by cadmium. Agr Med 133(3/4):169–178.
  • Baszyńki T, Wajda L, Krol M, Wolińska D, Krupa Z, Tukendorf A. 2006. Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant 48(3):365–370.
  • Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227.
  • Chardonnens AN, Ten Bookum WM, Kuijper LDJ, Verkleij JAC, Ernst WHO. 1998. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol Plant 104(1):75–80.
  • da Rosa Corrêa AX, Rörig LR, Verdinelli MA, Cotelle S, Férard JF, Radetski CM. 2006. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers. Sci Total Environ 357(1):120–127.
  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL. 2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55(9):1159–1168.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101.
  • Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T. 2008. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J Environ Sci 20(2):199–206.
  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190.
  • Gill PK, Sharma AD, Singh P, Bhullar SS. 2003. Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul 40(2):157–162.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930.
  • Hegedüs A, Erdei S, Horváth G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160(6):1085–1093.
  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A. 2002. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40(11):977–982.
  • Irigoyen JJ, Einerich DW, Sánchez-Díaz M. 2006. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant 84(1):55–60.
  • Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J Exp Bot 64(2):541–552.
  • Jiang M, Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273.
  • Kambhampati MS, Begonia GB, Begonia MFT, Bufford Y. 2005. Morphological and physiological responses of morning glory (Ipomoea lacunosa L.) grown in a lead-and chelate-amended soil. Int J Environ Res Public Health 2(2):299–303.
  • Klotke J, Kopka J, Gatzke N, Heyer AG. 2004. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation–evidence for a role of raffinose in cold acclimation. Plant, Cell & Environ 27(11):1395–1404.
  • León AM, Palma JM, Corpas FJ, Gómez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Río LA, Sandalio LM. 2002. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40(10):813–820.
  • Li DD, Zhou DM, Wang P, Weng NY, Zhu XD. 2011. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Ecotoxicol Environ Saf 74(4):874–881.
  • Li QF, Qiu RL. 2012. Cadmium physiological tolerance and accumulation characteristics of Jatropha curcas L. J Agro-Environ Sci 31(1):42–47.
  • Liang P, Pardee AB. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971.
  • Lima AIG, Pereira SIA, de Almeida Paula Figueira EM, Caldeira GCN, de Matos Caldeira HDQ. 2006. Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55(1):149–162.
  • Liu JX, Sun ZY, Ju GS, Han L, Qian YQ. 2011. Physiological response of Zoysia japonica to Cd2+. Acta Ecol Sin 31(20):6149–6156.
  • Lu RK. 2000. Analytical methods of soil agrochemistry. Beijing (China): China Agricultural Science and Technology Press.
  • McLaughlin MJ, Parker DR, Clarke JM. 1999. Metals and micronutrients–food safety issues. Field Crop Res 60(1):143–163.
  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44(1):25–37.
  • Pauls KP, Thompson JE. 1984. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons. Plant Physiol 75(4):1152–1157.
  • Pavel PB, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH. 2014. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480C:125–131.
  • Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC. 2014. Miscanthus as a Productive Biofuel Crop for Phytoremediation. Crit Rev Plant Sci 33(1):1–19.
  • Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114(2):695–704.
  • Purdy SJ, Maddison AL, Jones LE, Webster RJ, Andralojc J, Donnison I, Clifton-Brown J. 2013. Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. × giganteus compared with M. sinensis and M. sacchariflorus. Ann Bot 111(5):999–1013.
  • Qin JQ, Xia BC, Zhao P, Zhao HR, Xie GH. 2011. Accumulation and Translocation of Cd in Two Miscanthus floridulus Populations. J Agro-Environ Sci 30(1):21–28.
  • Ringel C, Siebert S, Wienhaus O. 2003. Photometric determination of proline in quartz microplates: remarks on specificity. Anal Biochem 313(1):167–169.
  • Robson PR, Farrar K, Gay AP, Jensen EF, Clifton-Brown JC, Donnison IS. 2013. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J Exp Bot 64(8):2373–2383.
  • Sanita di Toppi L, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130.
  • Scandalios JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiol 101(1):7–12.
  • Seth CS, Kumar Chaturvedi P, Misra V. 2008. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71(1):76–85.
  • Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH. 2012. Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126.
  • Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060.
  • Wu Y, von Tiedemann A. 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116(1):37–47.
  • Yang SY, Huang YJ, Zhang J, Zhou SB. 2014. Physio-biochemical response to copper stress of Miscanthus floridulus, a pioneer plant species in mine wastes - potential for phytoremediation. Fresenius Environ Bull 23(3):686–692.
  • Yang SY, Xie JC, Li QF. 2012. Oxidative response and antioxidative mechanism in germinating soybean seeds exposed to cadmium. Int J Environ Res Public Health 9(8):2827–2838.
  • Zhang CB, Wang J, Ke SX, Jin ZX. 2009. Effects of natural inhabitation by Miscanthus floridulus on heavy metal speciations and function and diversity of microbial community in mine tailing sand. Chin J Plant Ecol 33(4):629–637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.