1,643
Views
91
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation potential of Lemna minor L. for heavy metals

, , &

References

  • Amahmid O, Asmama S, Bouhoum K. 2002. Urban wastewater treatment in stabilization ponds: Occurrence and removal of pathogens. Urban Water 4(3):255–262.
  • American Public Health Association (APHA). 2005. Standard methods for examination of water and wastewater. 21st ed. Washington (DC): American Water Works Association (AWWA) and Water Environmental Federation (WEF).
  • Aurangzeb N, Nisa S, Bibi Y, Javed F, Hussain F. 2014. Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian J Chem Eng 31(04):881–886.
  • Axtell NR, Sternberg SPK, Claussen K. 2003. Lead and nickel removing using Microspora and Lemna minor. Bioresour Technol 89(1):41–48.
  • Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardone G, Di Geronimo SI, Puntu R, Ottonello D. 2006. Heavy metals in coastal water system. A case study from the North Western Gulf of Thailand. Chemosphere 64(7):1167–1176.
  • Chandra R, Yadav S. 2011. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperous esculentus. Int J Phytoremed 13(6):580–591.
  • Chapman D. 1996. Water quality assessments. A guide to use of biota, sediments and water in environmental monitoring . UNESCO/WHO/UNEP. 2nd ed. F and FN Spon 11. London (UK): New Fetter Lane. p. 124.
  • Charles AL, Markich SJ, Ralph P. 2006. Toxicity of uranium and copper individually, and in combination, to a tropical freshwater macrophyte (Lemna aequinoctialis). Chemosphere 62(8):1224–1233.
  • Denny P. 1980. Solute movement in submerged angiosperms. Biol Rev 55(1):65–92.
  • Ekvall L, Greger M. 2003. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environ Poll 121(3):401–411.
  • Farid M, Irshad M, Fawad M, Ali Z, Eneji AE, Aurangzeb N, Mohammad A, Ali B. 2014. Effect of cyclic phytoremediation with different wetland plants on municipal wastewater. Int J Phytoremed 16(6):572–581.
  • Flegal R, Last J, McConnell E, Schenker M, Witschi H. 2001. Scientific review of toxicological and human health issues related to the development of a public health goal for Chromium (VI), Report prepared for the chromate toxicity review committee, p. 6.
  • Jain SK, Vasusevan P, Jha NK. 1990. Azolla pinnata R.Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Res 24(2):177–183.
  • Juberg DR, Kleiman CF, Kwon SC. 1997. Position Paper of the American Council on Science and Health: Lead and Human Health. Ecotoxicol Environ Saf 38(3):162–180.
  • Kara Y, Zeytunluoglu A. 2007. Bioaccumulation of toxic metals (Cd and Cu) by Groenlandia densa (L.) Fourr. Bull Environ Contam Toxicol 79(6):609–612.
  • Kuzovkina YA, Knee M, Quigley MF. 2004. Cadmium and copper uptake and translocation in five Willow (Salix L.) species. Int J Phytoremed 6(3):269–287.
  • Kwan KHM, Smith S. 1991. Some aspect of the kinetics of cadmium and thallium uptake by fronds of Lemna minor L. New Phytol 117(1):91–102.
  • Leblebici Z, Aksoy A. 2011. Growth and lead accumulation capacity of Lemna minor and Spirodela polyrrhiza (Lemnaceae): Interactions with Nutrient Enrichment. Water Air Soil Pollut 214:175–184.
  • Loveson A, Sivalingam R, Syamkumar R. 2013. Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. J Environ Sci Toxicol Food Technol 5(1):51–58
  • Maksymiec W. 1997. Effect of copper on cellular processes in higher plants. Photosynthetica 34(3):321–342.
  • Mant C, Costa S, Williams J, Tambourgi E. 2007. Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:767–772.
  • Miller GE, Wile I, Hitchin GG. 1983. Patterns of accumulation of selected metals in members of the soft-water macrophyte flora of central Ontario lakes. Aquat Bot 15(1):53–64.
  • Miretzky P, Saralegui A, Cirell AF. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57(8):997–1005.
  • Mishra VK, Tripathi BD. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097.
  • Ndeda LA, Manohar S. 2014. Bio concentration factor and translocation ability of heavy metals within different habitats of hydrophytes in Nairobi Dam, Kenya. J Environ Sci Toxicol Food Technol 8(5):42–45
  • Pakistan National Environmental Quality Standards (PNEQS). 1999. Pakistan environmental protection agency. Government of Pakistan, Pakistan. p. 4.
  • Pandey VC. 2012. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12.
  • Radic S, Stipanicev D, Cvjetko P, Mikelic IL, Rajcic MM, Sirac S, Kozlina BP, Pavlica M. 2010. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicol 19(1):216–222.
  • Rahman MA, Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646.
  • Rai PK. 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An eco-sustainable approach. Int J Phytoremed 10(2):133–160.
  • Rai UN, Sinha S, Tripathi, RD, Chandra P. 1995. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol Eng 5(1):5–12.
  • Sela M, Garty J, Tel-Or E. 1989. The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol 112(1):7–12.
  • Sharma SS, Gaur JP. 1995. Potential of Lemna polyrrhiza for removal of heavy metals. Ecol Eng 4(1):37–43.
  • Singh D, Gupta R, Tiwari A. 2012. Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. Int J Food Sci Technol 2(1):10–26.
  • Smits EP, Pilon M. 2002. Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456.
  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS. 2012. Phytoremediation potential of aquatic macrophyte, Azolla. AMBIO 41(2):122–137.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed (Chromolaena odorata L. King & Robinson). Chemosphere 68(2):323–329.
  • Vijaya RK. 2008. Environmental microbiology. 1st ed. Chennai. (India): MJP Publishers.
  • Yilmaz DD, Akbulut H. 2011. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes). Int J Phytoremed 13:970–984.
  • Zayed A, Gowthaman S, Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: Duckweed. J Environ Qual 27(3):715–721.
  • Zhang X, Hu Y, Liu Y, Chen B. 2011. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci 23(4):601–606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.