371
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of the root system of Brassica juncea (L.) czern. and Bidens pilosa L. exposed to lead polluted soils using rhizobox systems

, , &
Pages 235-244 | Received 28 Aug 2014, Accepted 01 Jul 2015, Published online: 06 Jan 2016

References

  • Alloway BJ. 1995. Soil processes and the behaviour of metals. In: Alloway BJ, editor. Heavy metals in soils. London (UK): Blackie Academic and Professional. p. 11–37.
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants: A review of ecology and physiology of a biological resource for phytoremediation of metalpolluted soils. In: Terry N, et al., editors. Phytoremediation of Contaminated Soil and Water. Boca Raton (FL): Lewis Publishers. p. 129–158.
  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. 1994. The possibility of in situ heavy metal decontamination of soils using crops of metal-accumulating plants. Resour Conserv Recyc 11:41–49.
  • Baldantoni D, Cicatelli A, Bellino A, Castiglione S. 2014. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. Journal of Environmental Management 146:94–99.
  • Barman SC, Sahu RK, Bhargava SK, Chatterjee C. 2000. Distribution of heavy metals in wheat, mustard and weed grains irrigated with industrial effluents. Bull Environ Conta Toxicol 64:489–496.
  • Blaylock MJ, Huang JW. 2000. Phytoextraction of metals. Phytoremediation of toxic metals: Using plants to clean-up the environment. New York (NY): John Wiley & Sons.
  • Brooks RR. 1998. Biogeochemistry and hyperaccumulators. In: Brooks RR, editor. Plants that hyperaccumulate heavy metals. Wallingford (UK): CAB International. p 95–118.
  • Cappa JJ, Pilon Smits EAH. 2014. Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275.
  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M. 1999. Improving metal hyperaccumulators wild plants to develop commercial phytoextractions systems: Approaches and progress. In: Terry N, Bañuelos GS, editors. Phytoremediation of Contaminated Soil and Water. Boca Raton (FL): CRC Press. p. 131–160.
  • Dahmani-Muller H, Van Oort F, Gelie B, Balabane M. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238.
  • de Souza MO, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N. 1999. Rhyzosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 199:565–573.
  • Dinkelaker B, Hahn G, Römheld V, Wolf GA. 1993. Nondestructive methods for demonstrating chemical changes in the rhizosphere I. Description of methods. Plant Soil 156:67–74.
  • Engels C, Neumann G, Gahoonia T, George E, Schenk M. 2000. Assessment of the ability of roots for nutrient acquisition. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC, editors. Root methods. A handbook. Heidelberg (Germany): Springer. p. 403–459.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and Utilization of its byproducts. Appl Ecol Environ Res 3:1–18.
  • Gleyzes C, Tellier S, Astruc M. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trend Anal Chem 21:451–467.
  • Gunawardana B, Singhal N, Johnson A. 2011. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Int J Phytoremediat 13:215–232.
  • Häussling M, Leisen E, Marschner H, Römheld V. 1985. An improved method for non-destructive measurement of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117:371–375.
  • Hinsinger P, Elsass F, Jaillard B, Robert M. 1993. Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. J Soil Sci 44:535–545.
  • Kabata-Pendias A, Adriano DC. 1995. Trace metals. In: Rechcigl JE, editor. Soil Amendments and Environmental Quality. Boca Raton (FL): Lewis Publishers. p. 139–167.
  • Kabata‐Pendias A, Sadurski W. 2004. Trace elements and compounds in soil. In: Merian E, Anke M, Ihnat M, Stoeppler M, editors. Elements and Their Compounds in the Environment. 2nd ed. Weinheim (Germany): Wiley-VCH Verlag. p. 79–99.
  • Kabata-Pendias A. 2004. Soil-plant transfer of trace elements-an environmental issue. Geoderma 122:143–149.
  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo P, Poschenrieder C, Shilev S, Clemente R, Monterroso C. 2009. Trace element behavior at the root-soil interface. Implications in phytoremediation. Environ Exp Bot 67:243–259.
  • Kim KR, Owens G, Kwon S-IK. 2010. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. Journal of Environmental Sciences 22:98–105.
  • Knight B, Zhao FJ, McGrath SP, Shen ZG. 1997. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentrations and chemical speciation of metals in soil solution. Plant Soil 197:71–78.
  • Komárek M, Chrastný V, Štíchová J. 2007. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ Int 33:677–684.
  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44.
  • Li Y, Wang L, Yang L, Li H. 2014. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress. Ecotox Environ Safe 102:55–61.
  • Lin Q, Chen YX, He YF, Tian GM. 2004. Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric Ecosyst Environ 104:605–613.
  • Lippmann M. 1990. Lead and human health: background and recent findings. Environ Res 51:1–24.
  • Liu D, Jiang W, Liu C, Xin C, Hou W. 2000. Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresource Technol 71:273–277.
  • Lobet G, Pagès L, Draye X. 2011. A novel image analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39.
  • Luo YM, Christie P, Baker AJM. 2000. Soil solution Zn and pH dynamics in non rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 42:161–164.
  • Lynch JM. 1990. The Rhizosphere. Chichester, Sussex, (UK): Wiley. p. 458.
  • Marschner H, Römheld V. 1983. In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Zeitschrift für Pflanzenphysiologie 111:441–251.
  • McGrath SP, Zhao FJ, Lombi E. 2001. Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils. Plant and Soil 232:207–214.
  • McGrath SP, Zhao J, Lombi E. 2002. Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56.
  • McIntyre T. 2003. Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering and Biotechnology 78:97–123.
  • McLaughlin MJ, Smolders E, Merckx R. 1998. Soil-root interface: physicochemical processes. In: Huang PM, Adriano DC, Logan TJ, Checkai RT, editors. Soil chemistry and ecosystem health. SSSA Special Publication 52. Madison (WI): Soil Science Society of America. p. 233–277.
  • Meyers DE, Auchterlonie GJ, Webb RI, Wood B. 2008. Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332.
  • Moiseenko TI, Voinov AA, Megorsky VV, Gashkina NA, Kudriavtseva LP, Vandish OI, Sharov AN, Sharova Yu, Koroleva IN. 2006. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake. Sci Total Environ 369:1–20.
  • Nanda Kumar PBAN, Dushenkov S, Salt DE, Raskin I. 1994. Crop Brassicas and phytoremediation - a novel environmental technology. Cruciferae Newsletter Eucarpia 16:18–19.
  • Neumann G, George TS, Plassard C. 2009. Strategies and methods for studying the rhizosphere - the plant science toolbox. Plant Soil 321:431–456.
  • Padmavathiamma PK, Li LY. 2007. Phytoremediation Technology: hyperaccumulation metals in plants. Water Air Soil Poll 184:105–126.
  • Palmer CE, Warwick S, Keller W. 2001. Brassicaceae (cruciferae) family, plant biotechnology and phytoremediation. Int J Phytoremediat 3:245–287.
  • Rajmohan N, Prathapar SA, Jayaprakash M, Nagarajan R. 2014. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environ Monit Assess 186:5411–5427.
  • Rasband WS, Image J. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014.
  • Reeves RD. 1992. Hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD, editors. The vegetation of ultramafic (serpentine) soils. Andover (UK): Intercept. p. 253–277.
  • Reeves RD. 2006. Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N, editors. Phytoremediation of Metal-Contaminated Soils. Dordrecht (Netherlands): Springer. p. 25–52.
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V. 1997. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration 59:75–86.
  • Rodriguez JH, Salazar MJ, Steffan L, Pignata ML, Franzaring J, Klumpp A, Fangmeier A. 2014. Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. J Geochem Explor 145:129–134.
  • Rodríguez L, Rincón J, Asencio L, Rodríguez-Castellanos L. 2007. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Int J Phytoremediat 9:1–13.
  • Salazar MJ. 2013. Contaminación por plomo de suelos residenciales y agrícolas en Bouwer, Provincia de Córdoba. Movilización del contaminante hacia los cultivos y la vegetación silvestre. Tesis de Maestría en Ciencias de la Ingeniería, Mención Ambiente. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.
  • Salazar MJ, Pignata ML. 2014. Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36.
  • Salazar MJ, Rodriguez JH, Nieto GL, Pignata ML. 2012. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mater 244–213.
  • Tessier A, Cambell PGC, Bisson M. 1979. Sequential extraction procedure for the special of particulate trace metals. Anal Chem 51(7): 844–851.
  • Van der Ent A, Baker AJM, Reeves R, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334.
  • Wang B, Liu L, Gao Y, Chen J. 2009. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Chemosphere 74:1400–1403.
  • Wang QR, Cui YS, Liu XM, Dong YT, Christrie P. 2003. Soil contamination and plant uptake of heavy metals at polluted sites in china. J Environ Sci Health (A) 38:823–838.
  • Watanabe ME. 1997. Phytoremediation on the brink of commercialization. Environ Sci Tech 18;31:182–186.
  • Whiting SN, Leake JR, Mcgrath ST, Baker AJM. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210.
  • Yoon J, Cao X, Zhou Q, Ma QL. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464.
  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C. 2010. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. J Hazard Mater 183:609–615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.