157
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Phytolacca acinosa Roxb. with Arthrobacter echigonensis MN1405 enhances heavy metal phytoremediation

, , &

References

  • Abdi MR, Saraee KRE, Fard MR, Khorsandi J, Baradaran-Ghahfarokhi M. 2014. The evaluation of trace elements of interest in kidney disease in commonly consumed greenhouse vegetables in Isfahan, Iran: preliminary results. J Renal Inj Prev 3: 51–53.
  • Ali H, Khan E, and Sajad MA. 2013. Phytoremediation of heavy metals–concepts and applications. Chemosphere 91: 869–881.
  • Antosiewicz DM. 1993. Mineral status of dicotyledonous crop plants in relation to their constitutional tolerance to lead. Environ Exp Bot 33: 575–589.
  • Arduini L, Godbold D, Onnis A, Stefani A. 1998. Heavy metals influence mineral nutrition of tree seedlings. Chemosphere 36: 739–744.
  • Aryal M, Liakopoulou-Kyriakides M. 2015. Bioremoval of heavy metals by bacterial biomass. Environ Monitor Assess 187: 1–26.
  • Babu AG, Kim J-D, Oh B-T. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250: 477–483.
  • Bahafid W, Tahri Joutey N, Sayel H, Boularab I, El Ghachtouli N. 2013. Bioaugmentation of chromium‐polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. J Appl Microbiol 115: 727–734.
  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A. 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53: 306–316.
  • Batty L, Baker A, Wheeler B, Curtis C. 2000. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Ann Bot 86: 647–653.
  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E. 2010. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73: 1304–1308.
  • Burd GI, Dixon DG, Glick BR. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian J Microbiol 46: 237–245.
  • Cheng S. 2003. Heavy metal pollution in China: Origin, pattern and control. Environ Sci Pollut Res 10: 192–198.
  • Deng Y, Shao Q, Li C, Ye X, Tang R. 2012. Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Scientia Horticulturae 144: 19–28.
  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH. 2015. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes rendus biologies 338: 241–254.
  • Gaonkar T, Bhosle S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93: 1835–1843
  • Haferburg G, Kothe E. 2007. Microbes and metals: interactions in the environment. J Basic microbiol 47: 453–467.
  • Hayes R, Conyers M, Li G, Poile G, Price A, McVittie B, Gardner MJ, Sandral GA, McCormick JI. 2013. Spatial and temporal variation in soil Mn2+ concentrations and the impact of manganese toxicity on lucerne and subterranean clover seedlings. Crop Pasture Sci 63: 875–885.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. 2nd ed. California Agricultural Experiment Station 347:39.
  • Isaac RA, Kerber JD. 1971. Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. In: Wash LM, editor. Instrumental methods for analysis of soils and plant tissue. Madison(WI): Soil society of America, pp 17–37.
  • Khandare RV, Rane NR, Waghmode TR, Govindwar SP. 2012. Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Science Pollut Res Int 19: 1709–1718.
  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M. 2015. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22: 5370–5382.
  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J. 1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil. 200: 241–250.
  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G. 2015. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:1–12.
  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E. 2014. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res Int 21: 6845–6858.
  • Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153.
  • Li K, Ramakrishna W. 2011. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189: 531–539.
  • Liu H, Zhang Y, Chai T, Tan J, Wang J, Feng S, Liu G. 2013. Manganese-mitigation of cadmium toxicity to seedling growth of Phytolacca acinosa Roxb. is controlled by the manganese/cadmium molar ratio under hydroponic conditions. Plant Physiol Biochem 73: 144–153.
  • Ma Y, Rajkumar M, Luo Y, Freitas H. 2013. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93: 1386–1392.
  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11: 251–267.
  • Mathew DC, Ho Y-N, Gicana RG, Mathew GM, Chien M-C, Huang C-C. 2015. A Rhizosphere-associated symbiont, photobacterium spp. Strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PloS one 10: e0121178.
  • Memon AR, Chino M, Takeoka Y, Hara K, Yatazawa M. 1980. Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylloides as revealed by Electronprobe X‐Ray Microanalyzer. J Plant Nutr 2: 457–476.
  • Newman LA, Reynolds CM. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends biotechnol 23: 6–8.
  • Peng J-f, Song Y-h, Yuan P, Cui X-y, Qiu G-l. 2009. The remediation of heavy metals contaminated sediment. J Hazard Mater 161: 633–640.
  • Peng S, Zhou Q, Cai Z, Zhang Z. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168: 1490–1496.
  • Phieler R, Voit A, Kothe E. 2014. Microbially supported phytoremediation of heavy metal contaminated soils: Strategies and applications. Adv Biochem Eng/biotechnol 141: 211–235.
  • Prasad M, Freitas H, Fraenzle S, Wuenschmann S, Markert B. 2010. Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158: 18–23.
  • Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, Mandal A. 2014. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1349–1360.
  • Rajkumar M, Ae N, Freitas H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77: 153–160.
  • Rajkumar M, Freitas H. 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71: 834–842.
  • Rani A, Shouche YS, Goel R. 2008. Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57: 78–82.
  • Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8: 221–226.
  • Robert M, Berthelin J. 1986. Role of biological and biochemical factors in soil mineral weathering. Interactions of soil minerals with natural organics and microbes. (interactionsofs ): 453–495.
  • Salemaa M, White C, Tuittila E, Huopalainen M. 2000. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. Environ Pollut 109: 211–219.
  • Salt DE BM, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474.
  • Shabani L, Sabzalian MR. 2015. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 1–10.
  • Shafaei A, Rezayee M, Arami M, Nikazar M. 2010. Removal of Mn 2+ ions from synthetic wastewater by electrocoagulation process. Desalination 260: 23–28.
  • Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz K-J. 2004. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Sci 166: 1287–1295.
  • Sharma Y, Singh S, Gode F. 2007. Fly ash for the removal of Mn (II) from aqueous solutions and wastewaters. Chem Eng J 132: 319–323.
  • Shim J, Babu AG, Velmurugan P, Shea PJ, Oh B-T. 2014. Pseudomonas fluorescens JH 70–4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environ Technol 35: 2589–2596.
  • Shin M-N, Shim J, You Y, Myung H, Bang K-S, Cho M, Kamala-Kannan S, Oh BT. 2012. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199: 314–320.
  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N. 2013. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262: 1039–1047.
  • St-Cyr L, Campbell PG. 1996. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33: 45–76.
  • Tüzen M. 2003. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J 74: 289–297.
  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M. 1974. Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21: 314–318.
  • Turgut C. 2003. The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000–2002. Environ Int 29: 29–32.
  • Wei Y, Hou H, ShangGuan Y, Li J, Li F. 2014. Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur J Soil Biol 62: 15–21.
  • Xu B, Yu S. 2013. Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Ann Bot 111: 1189–1195.
  • Xue S, Wang J, Zhou X, Liu H, Chen Y. 2010. A critical reappraisal of Phytolacca acinosa Roxb. (Phytolaccaceae) – A manganese-hyperaccumulating plant. Acta Ecologica Sinica 30: 335–338.
  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A. 2010. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184: 523–532.
  • Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S. 2012. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol 169: 1243–1252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.