413
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes

, , , , , & show all

References

  • Aneel. 2008. Atlas de Energia Elétrica do Brasil. Agência Nacional de Energia Elétrica. Brasília. 236p.
  • Bhalerao SA. 2013. Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils. Int J Sci Nat. 4:1–15.
  • Barnhisel RI, Powell JL, Akin GW, Ebelhar MW. 1982. Characteristics and reclamation of acid sulfate mine spoil. In: Kittrick JA, Fanning DS, Hossner LR. (eds), Acid sulfate weathering. Soil Science Society America, Madison (WI)., p. 37–56.
  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M. 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem. 41:1491–1496.
  • Berbara RLL, Souza FA, Fonseca HMAC. 2006. III – Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS. (eds), Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo, Viçosa (MG)., p. 74–85.
  • Bhogal A, Nicholson FA, Chambers BJ. 2009. Organic carbon additions: effects on soil bio-physical and physico-chemical properties. Eur J Soil Sci. 60:276–286.
  • CETESB - Companhia Ambiental do Estado de São Paulo. 2014. Decisão de Diretoria n° 045/2014/E/C/I, de 20 de fevereiro de 2014. Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo – 2014 WEB. http://www.cetesb.sp.gov.br/userfiles/file/solo/valores-orientadores-2014.pdf. Accessed 08 May 2014.
  • Christie P, Li X, Chen B. 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil. 261:209–217.
  • Ferreira DF. 1998. Sistemas de análise estatística para dados balanceados. DEX: Sisvar, UFLA, Lavras. 141p.
  • Ferreira PAA, Brunetto G, Giachini, AJ, Soares CRFS. 2014. Heavy metal uptake and the effect on plant growth. In: Gupta DK, Chatterjee S. (eds), Heavy metal remediation: transport and accumulation in plants. New York: Nova Science Publishers, Inc.p. 127–154.
  • Fujino C, Wada S, Konoike T, Toyota K, Suga Y, Ikeda JI. 2008. Effect of different organic amendments on the resistance and resilience of the organic matter decomposing ability of soil and the role of aggregated soil structure. Soil Sci Plant Nutr. 54:534–542.
  • Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 46:235–244.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorryhizal infection in roots. New Phytol. 84:489–500.
  • Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 223:1115–1122.
  • González-Chavez MC, Carrillo-González R, Wright SF, Nichols KA. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut. 130:317–323.
  • Hoagland D, Arnon DI. 1950. The water culture method for growing plants without soil. California Agriculture Experimental Station Circular. 347p.
  • Jamal A, Ayub N, Usman M, Khan AG. 2002. Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytorem. 4:205–221.
  • Jastrow JD, Miller RM, Lussenhop J. 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem. 30:905–916.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants, 4th ed. Boca Raton (FL): CRC. 505p.
  • Karagiannidis N, Nikolaou N. 2000. Influence of arbuscular mycorrhizae on heavy metal (Pb & Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am J Enol Vitic. 51:269–275.
  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ. 2000. Role of plants, mycorrhizae and phytochelators en heavy metal contaminated land remediation. Chemosphere. 21:197–207.
  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 82:1016–1045.
  • Lovelock CE, Wright SF, Nichols KA. 2004. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biol Biochem. 36:1009–1012.
  • Marschner H. 2012. Marschner's mineral nutrition of higher plants. Academic press. 651p.
  • Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 159:89–102.
  • Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12:563–569.
  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P. 2013. Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut. 224:1–12.
  • Moreira A, Costa DG. 2004. Dinâmica da matéria orgânica na recuperação de clareiras da floresta amazônica. Pesq Agropec Bras. 39:1013–1020.
  • Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E. 2002. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and mineral uptake by Leek. Environ Monit Assess. 79:177–191.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36.
  • Newsham KK, Fitter AH, Watkinson AR. 1995. Multifuncionality and biodiversity in arbuscular mycorrhizae. Trends Ecol Evol. 10:407–411.
  • Nogueira MA, Soares CRFS. 2010. Micorrizas arbusculares e elementos-traço. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM. (eds), Micorrizas: 30 anos de Pesquisa no Brasil. Lavras, (MG): UFLA. 716p.
  • Orlowska E, Godzik B, Turnau K. 2012. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environ poll. 168:121–130.
  • Paun A, Neagoe A, Baciu I. 2012. The role of fungi on alleviating the stress induced by heavy metals uptake in rye plants (Secale cereale L.) cultivated in soil from a roumanian industrial area. Rev Roum Chim. 57:141–150.
  • Pawlowska TE, Charvat I. 2004. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol. 70:6643–6649.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular – arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55158–55161.
  • Rangel WDM, Schneider J, Costa ETDS, Soares CRFS, Guilherme LRG, Moreira FMDS. 2014. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytorem. 16:840–858.
  • Roongtanakiat N, Sanoh S. 2011. Phytoextraction of zinc, cadmium and lead from contaminated soil by Vetiver Grass. Kasetsart J: Nat Sci. 45:603–612.
  • Sanchez JCD, Formoso MLL. 1990. Utilização do carvão e meio ambiente. Porto Alegre (RS): CIENTEC. 34p.
  • Sharpley AN, Weld JL, Beegle DB, Kleiman PJA, Gburek WJ, Moore JPA, Mullins G. 2003. Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv. 58:137–52.
  • Shaw AJ. 1989. Heavy metal tolerance in plants: Evolutionary aspects. New York: CRC Press. 355p.
  • Silva S, Siqueira JO, Soares CRFS. 2006. Fungos micorrízicos no crescimento e na extração de metais pesados pela braquiária em solo contaminado. Pesq Agropec Bras. 12:1749–1757.
  • Soares CRFS, Carneiro MAC. 2010. Micorrizas arbusculares na recuperação de áreas degradadas. In: Siqueira JO, Souza FA, Cardoso EJBN, Tsai SM. (eds), Micorrizas: 30 anos de Pesquisa no Brasil. Lavras (MG): UFLA. 716p.
  • Soares CRFS, Siqueira JO. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils. 44:833–841.
  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. 1995. Análise de solo, plantas e outros materiais. UFRGS, Porto Alegre, RS. 174p.
  • Truong P. 2000. Vetiver grass technology for environmental protection. In: Proceedings of the 2nd International Vetiver Conference: Vetiver and the Environment. Annals. Cha Am, Thailand.
  • Wang FY, Lin XG, Yin R. 2007. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytorem. 9:345–353.
  • Wong CC, Wu SC, Kuek C, Khan AG, Wong MH. 2007. The role of mycorrhizae associated with vetiver grown in Pb‐/Zn-contaminated soils: greenhouse study. Restor Ecol. 15(1):60–67.
  • Ye ZH, Baker AJM, Wong MH, Willis AJ. 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol. 136:469–480.
  • Zasoski RJ, Burau RG. 1977. A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Commun Soil Sci Plant Anal. 3:425–436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.