218
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil

, , , , , , & show all

References

  • Aronsson P, Dahlin T, Dimitriou I. 2010. Treatment of landfill leachate by irrigation of willow coppice—plant response and treatment efficiency. Environ Pollut 158(3):795–804.
  • Ashworth J. 1997. Improvements to two routine methods for calcium carbonate determination in soils. Commun Soil Sci Plan 28(11–12):841–848.
  • Borowiak K, Gąsecka M, Mleczek M, Dąbrowski J, Chadzinikolau T, Goliński P, Rutkowski P, Kozubik T. 2015. Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea × triandra × viminalis 2 at various Zn concentrations. Acta Physiol Plant 37:155.
  • Breś W, Golcz A, Komosa A, Kozik E, Tyksiński W. 2009. Żywienie roślin ogrodniczych. The breeding of garden plants. Poznan: University of Life Sciences Publishing [in Polish].
  • Caliński T, Kaczmarek P. 1973. Methods of complex analysis of multivariate experiments. 3rd methodological colloquim in agro-biometry. Warsaw: Polish Academy of Sciences. p. 258–320 ( in Polish).
  • Davis ROE, Bennett HH. 1927. Grouping of soils on the basis of mechanical analysis. United States Department of Agriculture Departmental Circulation, No. 419.
  • De Maria S, Rivelli AR, Kuffner M, Sessitsch A, Wenzel WW, Gorfer M, Strauss J, Puschenreiter M. 2011. Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere 84(9):1256–1261.
  • Dickinson NM, Pulford ID. 2005. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31(4):609–613.
  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D. 2015. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 2015(7):2189–2212.
  • Dos Santos Utmazian MM, Wieshammer G, Vega R, Wenzel WW. 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148(1):155–165.
  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Chadzinikolau T, Goliński P. 2014. Copper phytoextraction with Salix purpurea × viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiol Plant 36(4):903–913.
  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P. 2012. Changes in Salix viminalis L. cv. ′Cannabina' morphology and physiology in response to nickel ions—hydroponic investigations. J Hazard Material 217–218:428–439.
  • Eriksson J, Ledin S. 1999. Changes in phytoavailability and concentration of cadmium in soil following long term cropping of Salix. Water Air Soil Pollut 114(1–2):171–184.
  • Fischerová Z, Tlustoš P, Száková J, Šichorová K. 2006. A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144(1):93–100.
  • Gabriel KR. 1964. A procedure for testing the homogeneity of all sets of means in analysis of variance. Biometrics 20(3):459–477.
  • Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Chadzinikolau T, Rissmann I, Goliński P. 2012. Physiological and morphological changes in Salix viminalis as a result of plant exposure to copper. J Environ Sci Heal A 47(4):548–557.
  • Ghori Z, Iftikhar H, Bhatti MF, um-Minullah N, Sharma I, Kazi AG, Ahmad P. 2016. Phytoextraction: the use of plants to remove heavy metals from soil. In: Ahmad P, ed. Plant metal interaction. Emerging remediation techniques. Amsterdam: Elsevier. p. 385–409.
  • Goliński P, Mleczek M, Magdziak Z, Gąsecka M, Borowiak K, Dąbrowski J, Kaczmarek Z, Rutkowski P. 2015. Efficiency of Zn phytoextraction, biomass yield and formation of low molecular weight organic acids in S × rubens—a hydroponic experiment. Chem Ecol 31(4):345–364.
  • Hermle S, Günthardt-Goerg MS, Schulin R. 2006. Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environ Pollut 144(2):703–714.
  • ISO 11271. 2002. Jakość gleby. Oznaczanie potencjału redox. Metoda polowa. (Soil quality. Determination of redox potential. Field method.) [in Polish].
  • Jadia CD, Fulekar MH, 2009. Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928.
  • Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK. 2009. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157(3):931–937.
  • Justin MZ, Pajk N, Zupanc V, Zupančič M. 2010. Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Manag 30(6):1032–1042.
  • Kabata-Pendias A, Pendias H. 1999. Biogeochemia pierwiastków śladowych. Biogeochemistry of trace elements. Warsaw: Polish Scientific Publishers (in Polish).
  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44.
  • Kwiecień R, Zając S. 2003. Krajowy Program zwiększania lesistości (National Program for Increasing Forest Cover). Ministry of the Environment [in Polish].
  • Labrecque M, Teodorescu TI. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenerg 29(1):1–9.
  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD. 2007. Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290(1–2):157–172.
  • Mleczek M, Gąsecka M, Drzewiecka K, Goliński P, Magdziak Z, Chadzinikolau T. 2013. Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes. Acta Physiol Plant 35(11):3251–3259.
  • Mleczek M, Kaczmarek Z, Magdziak Z, Golinski P. 2010a. Hydroponic estimation of heavy metal accumulation by different genotypes of Salix. J Environ Sci Heal A 45(5):1–10.
  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K, Stachowiak A. 2010b. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34(9):1410–1418.
  • Mleczek M, Łukaszewski M, Kaczmarek Z, Rissmann I, Golinski P. 2009a. Efficiency of selected heavy metals accumulation by Salix viminalis roots. Environ Exp Bot 65(1):48–53.
  • Mleczek M, Rissmann I, Rutkowski P, Kaczmarek Z, Golinski P. 2009b. Accumulation of selected heavy metals by different genotypes of Salix. Environ Exp Bot 66(2):289–296.
  • Mocek A, Drzymała S. 2010. Geneza, analiza i klasyfikacja gleb. [Genesis, analysis and soil classification.] Wyd. UP in Poznań. [in Polish].
  • Page AL, Miller RH, Keeney DR. 1982. Methods of soil analysis. Part 2: Chemical and microbiological properties. Madison, WI: Agronomy, ASSSA.
  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GI. 2009. The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2):633–640.
  • PIOŚ. 1995. Podstawy oceny chemicznego zanieczyszczenia gleb. Metale ciężkie, siarka i WWA. (Bases of estimation of chemical soils contamination. Heavy metals, sulphur and PAH). Institute of Soil Science and Plant Cultivation in Puławy. Biblioteka monitoringu środowiska, Warsaw [in Polish].
  • PN-ISO 10390. 1997. Jakość gleby. Oznaczanie pH. (Soil quality. Determination of pH.) [in Polish].
  • PN-ISO 1265+AC1. 1997. Jakość gleby. Oznaczanie przewodności elektrolitycznej. (Soil quality. Determination of electrolytic conduction.) [in Polish].
  • PN-ISO 14235: 2003. Jakość gleby. Oznaczanie zawartości węgla organicznego przez utlenianie dwuchromianem(VI) w środowisku kwasu siarkowego(VI). (Soil quality. Determination of organic carbon by sulfochromic oxidation.) [in Polish].
  • PTG, Polish Society of Soil Science. 2008. Particle size distribution and textural classes of soils and mineral materials. Classification of Polish society of soil sciences. Soil Sci Ann 60(2):5–16.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540.
  • Riddell-Black D. 1994. Sewage sludge as a fertilizer for short rotation energy coppice. In: Aronsson P, Perttu K, editors. Willow vegetation filters for municipal wastewater and sludges. Uppsala: Swedish University of Agricultural Sciences. p. 91–100.
  • Smart LB, Volk TA, Lin J, Kopp RF, Phillips IS, Cameron KD, White EH, Abrahamson LP. 2005. Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States. Unasylva (English ed.) 56:51–55.
  • Tlustoš P, Száková J, Vysloužilová M, Pavlíková D, Weger J, Javorská H. 2007. Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2(2):254–275.
  • Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW. 2007. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148(1):107–114.
  • Wang L, Sun W, Liu R-q, Gu X-C. 2014. Flotation recovery of vanadium from low-grade stone coal. T Nonferr Metal Soc 24(4):1145−1151.
  • Wieshammer G, Unterbrunner R, Bañares García T, Zivkovic MF, Puschenreiter M, Wenzel WW. 2007. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298(1–2):255–264.
  • Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals. Proc Environ Sci 16:722–729.
  • Yu X-Z, Gu J-D. 2008. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicol 17(3):143–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.