423
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effect of cadmium on physiological parameters of cereal and millet plants—A comparative study

, , , &

References

  • Ali B, Deng X, Hu X, Gill RA, Ali S, Wang S, Zhou W. 2015. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. J Agric Sci Technol 17(1):63–74.
  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. 2014. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251(6):1265–1283.
  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I. 2015. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121.
  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA. 2011. The message of nitric oxide in cadmium challenged plants. Plant Sci 181(5):612–620.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15.
  • Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216.
  • Bates L, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207.
  • Bhatt R, Asopa PP, Sihag S, Sharma R, Kachhwaha S, Kothari SL. 2015. Comparative three way analysis of biochemical responses in cereal and millet crops under salinity stress. J Appl Biol Biotechnol 3(6):22–28.
  • Bhattacharjee S. 1997. Membrane lipid peroxidation, free radical scavangers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol Plantarum 40(1):131–135.
  • Choppala G, Saifullah BN, Bibi S, Iqbal M, Rengel Z, Ok YS. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101.
  • Di Toppi LS, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130.
  • EFSA. 2009. Scientific opinion cadmium in food. EFSA J 980:1–139.
  • Ekmekci Y, Tanyolac D, Ayhan B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165(6):600—611.
  • Fawzy M, Nasr M, Helmi S, Nagy H. 2016. Experimental and theoretical approaches for Cd(II) biosorption from aqueous solution using Oryza sativa biomass. Int J Phytorem 18(11):1096–1103.
  • Gallego SM, Penaa LB, Barciaa RA, Azpilicuetaa CE, Iannonea MF, Rosales EP, Zawoznika MS, Groppaa MD, Benavides MP. 2012. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46.
  • Garg N, Manchanda G. 2009. ROS generation in plants: boon or bane? Plant Biosyst 143(1):81–96.
  • Gill S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930.
  • Gomez KA, Gomez AA. 1984. Statistical procedure for agricultural research. 2nd ed. New York: John Wiley. p. 680.
  • Gonzalez A, Gil-Diaz M, Lobo MC. 2015. Response of two barley cultivars to increasing concentrations of cadmium or chromium in soil during the growing period. Biol Trace Elem Res 163(1–2):235–243.
  • Greger M, Löfstedt M. 2004. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44(2):501–507.
  • Guo TR, Zhang GP, Zhang YH. 2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B 57(2):182–188.
  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV. 1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116(4):1413–1420.
  • Hassan MJ, Shao GP, Zhang G. 2005. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28(7):1259–1270.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198.
  • Irshad M, Ruqia B, Hussain Z. 2015. Phytoaccumulation of heavy metals in natural vegetation at the municipal wastewater site in Abbottabad, Pakistan. Int J Phytorem 17(12):1269–73.
  • Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL. 2008. Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (PaspalumscrobiculatumL.) and finger (Eleusinecoracana (L.) Gaertn.) millets. Plant Cell Tiss Organ Cult 94(2):105–112.
  • Li S, Wang F, Ru M, Ni W. 2014. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site—a hydroponics experiment. Int J Phytorem 16(12):1257–1267.
  • Liao C, Xu W, Lu G, Liang X, Guo C, Yang C, Dang Z. 2015. Accumulation of hydrocarbons by maize (Zea mays L.) in remediation of soils contaminated with crude oil. Int J Phytorem 17(7):693–700.
  • Liptakova L, Huttova J, Mistrik I, Tamas L. 2013. Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J Plant Physiol 170(7):646–652.
  • Maclachlan S, Zalic S. 1963. Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant on barley. Can J Bot 41(7):1053–1062.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant sci 7(9):405–410.
  • Murtaza G, Javed W, Hussain A, Wahid A, Murtaza B, Owens G. 2015. Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environ Sci Pollut Res 22(12):9136–9147.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216.
  • Ovecka M, Takac T. 2014. Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):73–86.
  • Racusen D, Foote M. 1965. Protein synthesis in the dark grown bean leaves. Can J Bot 43(7):817–824.
  • Ranieri A, Zagnoni I, Castagna A, Predieri G, Scebba F, Pagliari M, Careri M, Toppi LSD. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43(1):45–54.
  • Sghayar SS, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito FF. 2015. Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fertil Soils 51(3):311–320.
  • Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H. 2003. Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49(1):21–28.
  • Szabados L, Savoure A. 2009. Proline: a multifunctional amino acid. Trends Plant sci 15(2):89–97.
  • Teranishi Y, Tanaka A, Osumi M, Fukui S. 1974. Catalase activities of hydrocarbon utilizing Candida yeasts. Agric Biol Chem 38(6):1213–1220.
  • Verkleij JAC, Schat H. 1990. Mechanisms of metal tolerance in higher plants. In: Shaw AJ, eds. Heavy metal tolerance in plants: evolutionary aspects. Florida: CRC Press. p. 179–193.
  • Xue D, Chen M, Zhang G. 2009. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165(3):587–596.
  • Yu FM, Liu KH, Li MS, Zhou ZM, Deng H, Chen B. 2013. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza Sativa L.). Int J Phytorem 15(6):513–521.
  • Zenk MH. 1996. Heavy metal detoxification in higher plants—a review. Gene 179(1):21–30.
  • Zhou H, Zeng M, Zhou X, Liao B, Peng P, Hu M, Zhu W, Wu Y, Zou Z. 2015. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil 386(1–2):317–329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.