768
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance

, , , , , , , , & show all

References

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250.
  • Braud A, Jezequel K, Bazot S, Lebeau T. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286.
  • Chen B, Ma XX, Liu GQ, Xu XM, Pan FS, Zhang J, Tian SK, Yang X, Feng Y, Yang XE. 2015. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate–cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Environ Sci Pollut Res 22:17625–17635.
  • Chen B, Shen JG, Zhang XC, Pan FS, Yang XE, Feng Y. 2014a. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9(9):e106826.
  • Chen B, Zhang YB, Rafiq MT, Khan KY, Pan FS, Yang XE, Feng Y. 2014b. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373.
  • Chen L, Luo SL, Chen JL, Wan Y, Liu CB, Liu YT, Pang X, Lai C, Zeng G. 2012. Diversity of endophytic bacterial populations associated with Cd-hyperaccumulator plant Solanum nigrum L. grown in mine tailings. Appl Soil Ecol 62:24–30.
  • Cojocaru PC, Macoveanu M. 2011. Decontamination of polluted soil with cadmium and zinc using greenhouse phytoremediation. Environ Eng Manag J 10(3):349–355.
  • De-chun SU, Wong JWC. 2002. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ Sci 22:48–51.
  • Dell'Amico E, Cavalca L, Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. Fems Microbiol Ecol 52(2):153–162.
  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L. 2013. Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91(1):41–47.
  • Deng ZJ, Wang WF, Tan HM, Cao LX. 2012. Characterization of heavy metal-tolerant endophytic yeast Cryptococcus sp CBSB78 from Rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223(8):5321–5329.
  • Gao J, Sun L, Yang XE, Liu JX. 2013. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8(6):e64643.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195.
  • Goswami S, Das S. 2015. A study on cadmium phytoremediation potential of Indian Mustard, Brassica juncea. Int J Phytoremed 17(1–6):583–588.
  • Gupta DK, Huang HG, Corpas FJ. 2013. Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161.
  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB. 2014. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremed 16(4):321–333.
  • Khan W, Prithiviraj B, Smith DL. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160(5):485–492.
  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M. 2015. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res Int 22(7):5370–5382.
  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44.
  • Lan JC, Zhang SR, Lin HC, Li T, Xu XX, Li Y, Jia Y, Gong G. 2013. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 91(9):1362–1367.
  • Leung HM, Wang ZW, Ye ZH, Yung KL, Peng XL, Cheung KC. 2013. Interactions between Arbuscular Mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23(5):549–563.
  • Li WC, Ye ZH, Wong MH. 2007. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15–16):4173–4182.
  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y. 2012. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753.
  • Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85(7):1130–1138.
  • Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258.
  • Markwell J, Osterman JC, Mitchell JL. 1995. Calibration of the minolta spad-502 leaf chlorophyll meter. Photosynth Res 46:467–472.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. Fems Microbiol Lett 170(1):265–270.
  • Rajkumar M, Ae N, Freitas H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160.
  • Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149.
  • Rajkumar M, Sandhya S, Prasad MN, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574.
  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7(7):514–525.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56.
  • Sheng XF, Xia JJ. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042.
  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170.
  • Sun YB, Zhou QX, An J, Liu WT, Liu R. 2009. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150(1–2):106–112.
  • Toth B, Levai L, Kovacs B, Varga MB, Veres S. 2013. Compensation effect of bacterium containing biofertilizer on the growth of Cucumis sativus L. under Al-stress conditions. Acta Biol Hung 64(1):60–70.
  • Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38(3):327–333.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang XY. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 17:28–40.
  • Wang B, Liu L, Gao Y, Chen J. 2009. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Chemosphere 74(10):1400–1403.
  • Wang ZP, Qu L, Yao JF, Yang XL, Li GQ, Zhang YY, Li J, Wang X, Bai J, Xu G, Deng X, Yang N, Wu C. 2013. An EAV-HP insertion in 5′ Flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet 9(1):e1003183.
  • Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am J 29(6):677–678.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703.
  • Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM. 2013. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299(3):487–498.
  • Xiao WD, Wang H, Li TQ, Zhu ZQ, Zhang J, He ZL, Yang XE. 2013. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut Res 20(1):380–389.
  • Yang X, Li T, Yang JC, He ZL, Lu LL, Meng FH. 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224(1):185–195.
  • Yang X, Long XX, Ni WZ, Fu CX. 2002. Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chinese Sci Bull 47(19):1634.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259(1–2):181–189.
  • Yu XZ, Wu SC, Wu FY, Wong MH. 2011. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 186(2–3):1206–1217.
  • Zhang XC, Lin L, Chen MY, Zhu ZQ, Yang WD, Chen B, Yang X, An QL. 2012. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229:361–370.
  • Zhang XC, Lin L, Zhu ZQ, Yang X, Wang YY, An QL. 2013. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremed 15(1):51–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.