461
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita

, &

References

  • Ahluwalia SS, Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257.
  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manage 40:44–52.
  • Antonkiewicz J, Jasiewicz Cz. 2002. The use of plants accumulating heavy metals for detoxication of chemically polluted soils. Electron J Pol Agric Univ: Environ Dev 5(1):1–13.
  • Antonkiewicz J, Kołodziej B, Bielińska E. 2016. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res 23(10):9505–9517.
  • Audet P, Charest C. 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147(2007):231–237.
  • Baize D. 2009. Cadmium in soils and cereal grains after sewage-sludge application on French soils. A review. Agron Sustain Dev 29:175–184.
  • Banasiak SE, Meiners SJ. 2009. Long term dynamics of Rosa multiflora in a successional system. Biol Invasions 11:215–224.
  • Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Bae JH, Kim KH, Myung H, Oh BT. 2015. Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremed 17(6):515–520.
  • Beesley L, Moreno-Jiménez E, Clemente R, Lepp N, Dickinson N. 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environ Pollut 158:155–160.
  • Bondarczuk K, Markowicz A, Piotrowska-Seget Z. 2016. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ Int 87:49–55.
  • Borkowska H, Molas R. 2012. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 36:234–240.
  • Borkowska H, Molas R. 2013. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 51:145–153.
  • Chanakya HN, Ramachandra TV, Guruprasad M, Devi V. 2007. Micro-treatment options for components of organic fraction of MSW in residential areas. Environ Monit Assess 135:129–139.
  • Chen Y, Yu F, Liang S, Wang Z, Liu Z, Xiong Y. 2014. Utilization of solar energy in sewage sludge composting: fertilizer effect and application. Waste Manage 34:2014–2021.
  • Chrysafopoulou E, Kadukowa J, Kalogerakis N. 2005. A whole-plant mathematical model for the phytoextraction of lead (Pb) by maize. Environ Int 31(2005):255–262.
  • Ciarkowska K, Sołek-Podwika K, Wieczorek J. 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J Environ Manage 132:250–256.
  • Clemente R, Walker DJ, Roig A, Bernal MP. 2003. Heavy metal bioavailability in soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation 14(3):199–205.
  • Derr JF. 1989. Multiflora rose (Rosa Multiflora) control with metsulfuron. Weed Technol 3(2):381–384.
  • Dickinson NM, Pulford ID. 2005. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613.
  • Dimitriou I, Aronsson P. 2010. Landfill leachate treatment with willows and poplars—efficiency and plant response. Waste Manage 30:2137–2145.
  • Eapen S, D'Souza SF. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114.
  • Frankenberger WT, Dick WA. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am 47(5):945–951.
  • Franzaring J, Holz I, Kauf Z, Fangmeier A. 2015. Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at different temperatures and water supply. Biomass Bioenergy 81:574–583.
  • Fryxell PA. 1997. The American genera of Malvaceae-II. Brittonia 49(2):204–269.
  • Gerritse RG, Van Driel W, Smilde KW, Van Luit B. 1983. Uptake of heavy metals by crops in relation to their concentration in the soil solution. Plant Soil 75(3):393–404.
  • Ghosh M, Singh SP. 2005. A review of phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18.
  • Hseu ZY, Su SW, Lai HY, Guo HY, Chen TC, Chen ZS. 2010. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56(2010):31–52.
  • Jones JB Jr, Case VV. 1990. Sampling, handling, and analyzing plant tissue samples. In: RL Westerman, editor. Soil testing and plant analysis. 2nd ed. SSSA Book Series, No. 3. Madison (WI): Soil Science Society of America. p. 389–427.
  • Kieć J, Łabza T, Wieczorek D. 2011. The multiflora rose (Rosa multiflora) cultivar Jatar for energy purposes. Fragm Agron 28(3):35–41. (In polish)
  • Klima K, Kieć J, Lepiarczyk A, Synowiec A. 2014. Impact of laser beams treatment on the biomass yield and energy value of multiflora rose. Agric Eng 3(151):57–63.
  • Kołodziej B, Antonkiewicz J, Stachyra M, Bielińska EJ, Wiśniewski J, Luchowska K, Kwiatkowski C. 2015. Use of sewage sludge in bioenergy production—a case study on the effects on sorghum biomass production. Eur J Agron 69:63–74.
  • Kusznierewicz B, Bączek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namieśnik J, Konieczka P. 2012. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata F. Alba). Environ Toxicol Chem 31(11):2482–2489.
  • Ladd N, Butler JHA. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30.
  • Lai F, Ye Q, Tu S, Guo C, Luo Y. 2004. Investigation on plants in heavy-metal contaminated area. Acta Agric Univ Jiangxiensis 3:455–457.
  • Liu J, Zhou Q, Sun T, Ma LQ, Wang S. 2008. Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mater 151(2008):261–267.
  • Luo J, Qi S, Gu XWS, Hou T, Lin L. 2016. Ecological risk assessment of EDTA-Assisted Phytoremediation of Cd under different cultivation system. Bull Environ Contam Toxicol 96(2):259–264.
  • Macci C, Peruzzi E, Doni S, Loggio G, Masciandaro G. 2016. The phytoremediation of an organic and inorganic polluted soil: a real scale experience. Int J Phytoremed 18(4):378–386.
  • McDonough JK. 2003. A Rosa multiflora by any other name: taxonomic incommensurability and scientific kinds. Synthese 136:337–358.
  • McGrath SP, Zhao FJ, Lombi E. 2002. Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56.
  • Musilova J, Bystrycka J, Lachman J, Harangozo L, Trebichalsky P, Volnova B. 2016. Potatoes—a crop resistant against input of heavy metals from the metallicaly contaminated soil. Int J Phytoremed 18(6):547–552.
  • Nabel M, Temperton VM, Porter H, Lücke A, Jablonowski ND. 2016. Energizing marginal soils—the establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 87:9–16.
  • Ostrowska A, Gawliński S, Szczubiałka Z. 1991. Methods of analysis and assessment of soil and plant properties. A Catalgoue. Warsaw: Institute of Environmental Protection—National Research Institute. p. 334.
  • Page K, Harbottle MJ, Cleall PJ, Hutchings TR. 2014. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Sci Total Environ 487:260–271.
  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C. 2009. Cd and Zn acccumulation in plants from the Padaeng zinc mine area. Int J Phtyoremed 11(3):479–495.
  • Pichtel J, Kuroiwa K, Sawyerr HT. 2000. Distribution of Pb. Cd and Ba in soils and plants of two contaminated sites. Environ Pollut 110:171–178.
  • Pidlisnyuk V, Stefanovska T, Lewis EE, Ericsson LE, Davis LC. 2014. Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci 33(1):1–19.
  • Polish Soil Classification. 2011. Soil Science Annual 62(3):1–193. http://www.ptg.sggw.pl
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal contaminated land by trees—a review. Environ Int 29:529–540.
  • Qiu JR, Guo XF, Cai QY, Liu W, Zhang MW, Wei ZB, Wu QT. 2014. Phytotreatment of sewage sludge contaminated by heavy metals and pahs by co-planting Sedum Alfredii and Alocasia Marorrhiza. Int J Phytoremed 16(1):1–13.
  • Regulation. 2002. Regulation of the Minister of the Natural Environment on municipal sewage sludge dated 1 September 2002. Journal of Laws of Poland, No 134, Item 1140.
  • Regulation. 2015. Regulation of the Minister of the Natural Environment on municipal sewage sludge dated 6 February 2015. Journal of Laws of Poland, Item 257.
  • Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T. 2006. Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80(2):221–234.
  • Rosselli W, Keller C, Boschi K. 2003. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272.
  • Shibata M, Konno T, Akaike R, Xu Y, Shen R, Ma JF. 2007. Phytoremediation of Pb contaminated Soil with polimer-coated EDTA. Plant Soil 290(1):201–208.
  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN. 2011. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manage 31:115–123.
  • Singh RP, Agrawal M. 2008. Potential benefits and risks of land application of sewage sludge. Waste Manage 28:347–358.
  • Smith SR. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156.
  • Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. Washington (DC): USDA-Natural Resources Conservation Service. p. 360.
  • Stanisławska-Glubiak E, Korzeniowska J, Kocon A. 2015. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environ Sci Pollut Res 22:4706–4714.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307.
  • Thalmann A. 1968. Zur methodik der bestimmung der Dehydrogenaseaktivit∼tt im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258.
  • Tlustoś P, Szakova J, Vyslouzilova M, Pavlıkova D, Weger J, Jaworska H. 2007. Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Central Eur J Biol 2(2):254–275.
  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G. 2009. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894.
  • Waste Catalogue. 2014. Regulation of the Minister of the Natural Environment on catalog of wastes dated 9 December 2014. Journal of Laws of Poland, Item 1923.
  • Wei S, Teixeira da Silva JA, Zhou Q. 2008. Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668.
  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K. 2016. Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26(1):1–12.
  • Zantua MI, Bremner JM. 1975. Comparison of methods of assaying urease activity in soils. Soil Biol Biochem 7:291–295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.