472
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species

, , , , , , , , & show all

References

  • Ban Y, Xu Z, Zhang H, Chen H, Tang M. 2015. Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Ann Microbiol 65(1):503–515.
  • Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea M, Kidd P. 2012. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359.
  • Carrasco L, Azcón R, Kohler J, Roldán A, Caravaca F. 2011. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci Total Environ 409(6):1205–1209.
  • Chen B, Christie P, Li X. 2001. A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42(2):185–192.
  • Chen B, Tang X, Zhu Y, Peter C. 2005. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Sci China Ser C 48:156–164.
  • Chen HM, Zheng C R, Tu C, Shen ZG. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41(1–2):229–234.
  • Chen B, Zhu YG, Duan J, Xiao X, Smith SE. 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147(2):374–380.
  • Chen YX, Shi JY, Zhang W D, Lin Q, Tian GM. 2004. EDTA and industrial waste water improving the bioavailability of different Cu forms in contaminated soil. Plant Soil 261(1–2):117–125.
  • Christie P, Li X, Chen B. 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261(1):209–217.
  • Curaqueo G, Schoebitz M, Borie F, Caravaca F, Roldán A. 2014. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. Environ Sci Pollut Res 21(12):7403–7412.
  • Fernández D, Roldán A, Azcón R, Caravaca F, Bååth E. 2012. Effects of Water Stress, Organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species. Microb Ecol 63(4):794–803.
  • Gaur A and Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534.
  • Göhre V and Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122.
  • Gu H-H, Qiu H, Tian T, Zhan S-S, Deng T-H-B, Chaney R L, Wang S-Z, Tang Y-T, Morel J-L, Qiu R-L. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83(9):1234–1240.
  • Jiménez M, Bacchetta G, Casti M, Navarro F, Lallena A, Fernández-Ondoño E. 2011. Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia. Ecol Eng 37(2):392–398.
  • Joner EJ, Briones R, Leyval C. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226(2):227–234.
  • Joner E and Leyval C. 1997. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135(2):353–360.
  • Hafeez B, Khanif YM, Saleem M. 2013. Role of zinc in plant nutrion—A review. Am J Exp Agr 3(2):374–391.
  • Kaldorf M, Kuhn A, Schröder W, Hildebrandt U, Bothe H. 1999. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154(5):718–728.
  • Kim CS, Rytuba JJ, Brown Jr GE. 2004. EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides: II. Effects of chloride and sulfate. J Chem Technol Biotechnol 270(1):9–20.
  • Kjeldahl J. 1883. A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366.
  • Kocar BD, Borch T, Fendorf S. 2010. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim Cosmochim Acta 74(3):980–994.
  • Lai T, Cao A, Zucca A, Carucci A. 2012. Use of natural zeolites charged with ammonium or carbon dioxide in phytoremediation of lead- and zinc-contaminated soils. J Chem Technol Biotechnol 87(9):1342–1348.
  • Lehmann A, Veresoglou SD, Leifheit EFRillig MC. 2014. Arbuscular mycorrhizal influence on zinc nutrition in crop plants—a meta-analysis. Soil Biol Biochem 69:123–131.
  • Malcová R, Vosátka M, Gryndler M. 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23(1):55–67.
  • Mebius L. 1960. A rapid method for the determination of organic carbon in soil. Anal Chim Acta 22(1):120–124.
  • Mendez MO and Maier RM. 2008a. Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59.
  • Mendez MO and Maier RM. 2008b. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278.
  • Murphy J and Riley J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.
  • Olsen S, Cole C, Watanabe F, Dean L. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. Washington (DC): Government Printing Office.
  • Orłowska E, Orłowski D, Mesjasz-Przybyłowicz J, Turnau K. 2010. Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremed 13(2):185–205.
  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M. 2006. Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38(2):327–341.
  • Phillips J and Hayman D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55(1):158–161.
  • Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O. 2005. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137(2):316–323.
  • Rillig MC and Steinberg PD. 2002. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34(9):1371–1374.
  • Shi X, Zhang X, Chen G, Chen Y, Wang L, Shan X. 2011. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. J Environ Sci 23(2):266–274.
  • Solaiman ZM, Abbott L K, Varma A. 2014. Mycorrhizal fungi: use in sustainable agriculture and land restoration, Berlin Heidelberg: Springer.
  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM. 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409(6):1009–1016.
  • Verdugo C, Sánchez P, Santibáñez C, Urrestarazu P, Bustamante E, Silva Y, Gourdon D, Ginocchio R. 2010. Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment. Int J Phytoremed 13(2):107–125.
  • Vivas A, Marulanda A, Gómez M, Barea J, Azcón R. 2003. Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35(7):987–996.
  • Vivas A, Vörös A, Biró B, Barea J, Ruiz-Lozano J, Azcón R. 2003. Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Appl Soil Ecol 24(2):177–186.
  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633.
  • Wong M. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780.
  • Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Su D, Lv J, Li G, Zhang Z. 2015. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS and XAFS. Environ Sci Technol 49:14036–14047.
  • Yang Y, Liang Y, Han X, Chiu T-Y, Ghosh A, Chen HTang M. 2016. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469.
  • Ye Z, Shu W, Zhang Z, Lan C, Wong M. 2002. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47(10):1103–1111.
  • Zhang M, Wang Y, zhang C, Huang l. 1994. The ecological distribution characteristics of some genera and species of VAM fungi in northern China. Acta Mycol Sin 13(3):166–172.
  • Zhao XL and Masaihiko S. 2007. Amelioration of cadmium polluted paddy soils by porous hydrated calcium silicate. Water Air Soil Pollut 183(1–4):309–315.
  • Zhu YG, Christie P, Scott Laidlaw A. 2001. Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42(2):193–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.