286
Views
9
CrossRef citations to date
0
Altmetric
Articles

Nanotoxicity modelling and removal efficiencies of ZnONP

&

References

  • Adam N, Leroux F, Knapen D, Bals S, Blust R. 2014a. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios. Environ Pollut 194:130–137.
  • Adam N, Leroux F, Knapen D, Bals S, Blust R. 2015a. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water Res 68:249–261.
  • Adam N, Schmitt C, De Bruyn L, Knapen D, Blust R. 2015b. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Sci Total Environ 526:233–242.
  • Adam N, Schmitt C, Galceran J, Companys E, Vakurov A, Wallace R, Knapen D, Blust R. 2014b. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 8(7):709–717.
  • Adam N, Vergauwen L, Blust R, Knapen D. 2015c. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Environ Res 138:82–92.
  • Anonim, Water quality ISO-6341. 1999. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea): Acute toxicity test.
  • Azevedo SL, Ribeiro F, Jurkschat K, Soares AMVM, Loureiro S. 2016. Co-exposure of ZnO nanoparticles and UV radiation to Daphnia magna and Danio rerio: combined effects rather than protection. Environ Toxicol Chem 35(2):458–467.
  • Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P. 2016. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environ Res 148:376–385.
  • Baker TJ, Tyler CR, Galloway TS. 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271.
  • Basile A, Sorbo S, Conte B, Castaldo Cobianchi R, Trinchella F, Capasso C, Carginale V. 2012. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phyto 14(4):374–387.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158(1):41–47.
  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phyto 18(1):25–32.
  • Cañizares-Villanueva RO, Martínez-Jerónimo F, Espinosa-Chávez F. 2000. Acute toxicity to Daphnia magna of effluents containing Cd, Zn, and a mixture Cd-Zn, after metal removal by Chlorella vulgaris. Environ Toxicol 15(3):160–164.
  • Chakraborty J, Das S. 2016. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ Sci Pollut Res 23(17):16883–16903.
  • Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. 2014. Cadmium removal by lemna minor and spirodela polyrhiza. Int J Phyto 16(11):1119–1132.
  • Chen M, Shen X, Li D, Ma L, Dong J, Wang T. 2009. Identification and characterization of MtMTP1, a Zn transporter of CDF family, in the Medicago truncatula. Plant Physiol Biochem 47(11–12):1089–1094.
  • Clemens S, Deinlein U, Ahmadi H, Höreth S, Uraguchi S. 2013. Nicotianamine is a major player in plant Zn homeostasis. Biometals 26(4):623–632.
  • Clément L, Hurel C, Marmier N. 2013. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90(3):1083–1090.
  • Connolly EL, Fett JP, Guerinot ML. 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 4(6):1347–1357.
  • Cornu JY, Deinlein U, Höreth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S. 2015. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206(2):738–750.
  • Deshmukh R, Khardenavis AA, Purohit HJ. 2016. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264.
  • Elmacı A, Özengin N, Yonar T. 2009. Removal of chromium (III), copper (II), lead (II) and zinc (II) using Lemna minor L. Fresen Environ Bull 18(5):538–542.
  • Ghiani A, Fumagalli P, Nguyen Van T, Gentili R, Citterio S. 2014. The combined toxic and genotoxic effects of Cd and As to plant bioindicator Trifolium repens L. PLoS ONE 9(6).
  • Gottschalk F, Sun T, Nowack B. 2013. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ Pollut 181:287–300.
  • Gubbins EJ, Batty LC, Lead JR. 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559.
  • Gupta N, Ram H, Kumar B. 2016. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15(1):89–109.
  • Hanks NA, Caruso JA, Zhang P. 2015. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manage 164:41–45.
  • Haulik B, Balla S, Pálfi O, Szekeres L, Juríková T, Sály P, Bakonyi G. 2015. Comparative ecotoxicity of the nano Ag, TiO2 and ZnO to aquatic species assemblages. Appl Ecol Environ Res 13(2):325–338.
  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. 2012. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24(2):724–737.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316.
  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC. 2011. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res 45(1):179–190.
  • Hrdá K, Opršal J, Knotek P, Pouzar M, Vlček M. 2016. Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media. Chem Pap 70(11):1512–1520.
  • Huang BL, Cheng C, Zhang GY, Su JJ, Zhi Y, Xu SS, Cai DT, Zhang XK, Huang BQ. 2015. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa. Genet Mol Res 14(4):18121–18130.
  • Ilari A, Pescatori L, Di Santo R, Battistoni A, Ammendola S, Falconi M, Berlutti F, Valenti P, Chiancone E. 2016. Salmonella enterica serovar Typhimurium growth is inhibited by the concomitant binding of Zn(II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter. Biochim Biophys Acta Gen Subj 1860(3):534–541.
  • Jampasri K, Pokethitiyook P, Kruatrachue M, Ounjai P, Kumsopa A. 2016. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Int J Phyto 18(10):994–1001.
  • Jo HJ, Choi JW, Lee SH, Hong SW. 2012. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J Hazard Mater 227–228:301–308.
  • Kaweeteerawat C, Ivask A, Liu R, Zhang H, Chang CH, Low-Kam C, Fischer H, Ji Z, Pokhrel S, Cohen Y and others. 2015. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environ Sci Technol 49(2):1105–1112.
  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE. 2004. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251.
  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M. 2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45(12):1749–1758.
  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. 1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44.
  • Krämer U. 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol 517–534.
  • Kuang H, Yang P, Yang L, Aguilar ZP, Xu H. 2016. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. J Hazard Mater 317:119–126.
  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R. 2016. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. J Hazard Mater 317:169–179.
  • Lambert LA, Perri H, Meehan TJ. 2005. Evolution of duplications in the transferrin family of proteins. Comp Biochem Physiol B Biochem Mol Biol 140(1):11–25.
  • Lovern SB, Klaper R. 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25 (4):1132–1137.
  • Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 150(2):243–250.
  • Li J, Schiavo S, Rametta G, Miglietta ML, la Ferrara V, Wu C, Manzo S. 2017. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum. Environ Sci Pollut Res 1–11.
  • Li M, Lin D, Zhu L. 2013. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102.
  • Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139.
  • Liu R, Zhang H, Lal R. 2016. Effects of Stabilized nanoparticles of copper, zinc, manganese, and ıron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1).
  • Ma H, Williams PL, Diamond SA. 2013. Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85.
  • McMahon JW, Rigler FH. 1965. Feeding rate of Daphnia magna Straus in different foods labeled with radioactive phosphorus. Limnol Oceanogr 10:105–113.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269(2–3):182–189.
  • Muyssen ABT, Janssen RC. 2002. Accumulation and regulation of Zinc in Daphnia magna: links with homeostasis and toxicity. Arch Environ Contam Toxicol 43(4):0492–0496.
  • Mwaanga P, Carraway ER, van den Hurk P. 2014. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209.
  • OECD. 2002. Guidelines for the testing ofchemicals Lemna sp. Growth inhibition test. Draft guideline OECD:221.
  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D. 2013. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907.
  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D. 2008. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473.
  • Pandey LK, Han T, Gaur JP. 2015. Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology 24(3):573–582.
  • Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. 2010. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177(1–3):676–82.
  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O. 2012. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8(12).
  • Rahman QI, Ahmad M, Misra SK, Lohani M. 2013. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174.
  • Rahmani F, Peymani A, Daneshvand E, Biparva P. 2016. Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L. Indian J Plant Physiol 21(2):122–128.
  • Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP. 2015. Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. Plant Sci 236:1–17.
  • Santo N, Fascio U, Torres F, Guazzoni N, Tremolada P, Bettinetti R, Mantecca P, Bacchetta R. 2014. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: Does size matter? Water Res 53:339–350.
  • Sekomo CB, Rousseau DPL, Saleh SA, Lens PNL. 2012. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng 44:102–110.
  • Shahid A, Ahmad N, Anis M, Alatar AA, Faisal M. 2016. Morphogenic responses of Rauvolfia tetraphylla L. cultures to Cu, Zn and Cd ions. Rendiconti Lincei 27(2):369–374.
  • Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, Nayak UY, Reddy MS, Kalthur G, Udupa N and others. 2015. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomed 10:6477–6491.
  • Shi D, Wang W-X. 2004. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environ Pollut 132(2):265–277.
  • Singh P, Nanda A. 2014. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: An in vitro comparative study. Int J Cosmet Sci 36(3):273–283.
  • Skjolding LM, Winther-Nielsen M, Baun A. 2014. Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio). Aquat Toxicol 157:101–108.
  • Song U, Lee S. 2016. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res 1–7.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68(2):323–329.
  • Tiecher TL, Ceretta CA, Tiecher T, Ferreira PAA, Nicoloso FT, Soriani HH, Rossato LV, Mimmo T, Cesco S, Lourenzi CR and others. 2016. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol Environ Saf 129:109–119.
  • Üçüncü E, Özkan AD, Kurşungöz C, Ülger ZE, Ölmez TT, Tekinay T, Ortaç B, Tunca E. 2014. Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere 108:251–257.
  • Van de Perre D, Roessink I, Janssen CR, Smolders E, Van Regenmortel T, Van Wichelen J, Vyverman W, Van den Brink PJ, De Schamphelaere KAC. 2016. The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environ Toxicol Chem 35(11):2698–2712.
  • Wang WX, Rainbow PS. 2005. Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicol Environ Saf 61(2):145–159.
  • Witkowska Z, Rusek P, Witek-Krowiak A, Chojnacka K, Tuhy Ł, Samoraj M. 2016. Production of dietary feed supplements enriched in microelements in a pilot plant biosorption system. Int J Environ Sci Technol 13(4):1089–1098.
  • Yoneyama T, Ishikawa S, Fujimaki S. 2015. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16(8):19111–19129.
  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK. 2015. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219.
  • Zhu X, Chang Y, Chen Y. 2010. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.