212
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals

, , &

References

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A. 2014. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut R 21:11054–11065.
  • Ahmad Wani P, Khan S, Zaidi A. 2008. Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91:869–881.
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phyto-remediation of metal-polluted soils. In: Terry N, Banuelos GS, editors. Phytoremediation of contaminated soil and water. Boca Raton (FL): Lewis Publishers CRC Press. p. 85–107.
  • Bhargava A, Carmona FF, Bhargava M, Srivastava S. 2012. Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120.
  • Braud A, Jézéquel K, Bazot S, Lebeau T. 2009. Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286.
  • Capuana M. 2011. Heavy metals and woody plants- biotechnologies for phytoremediation. iForest 4:7–15.
  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL. 2003. Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814.
  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147.
  • Cloutier-Hurteau B, Turmel MC, Mercier C, Courchesne F. 2014. The sequestration of trace elements by willow (Salix purpurea)— which soil properties favor uptake and accumulation? Environ Sci Pollut R 21:4759–4771.
  • Covelo EF, Alvarez N, Andrade Couce ML, Vega FA, Marcet P. 2004. Zn adsorption by different fractions of Galician soils. J Colloid Interf Sci 280:343–349.
  • Davidson CM, Urquhart GJ, Ajmone-Marsan F, Biasioli M, da Costa Duarte A, Diaz-Barrientos E, Grčman H, Hossack I, Hursthouse AS, Madrid L, Rodrigues S. 2006. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal Chim Acta 565:63–72.
  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Lo Schiavo F. 2009. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228.
  • Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E. 2009. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162.
  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B. 2001. Adsorption and migration of selected heavy metals in soil profile. Pol J Environ Stud 10:5–12.
  • Feigl G, Lehotai N, Molnar A, Ӧrdӧg A, Rodriguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z. 2015. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625.
  • Filgueiras AV, Lavilla I, Bendicho C. 2004. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci Total Environ 330:115–129.
  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. 2012. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot 83:33–46.
  • Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57:2351–2359.
  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L. 2006. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969.
  • Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech Adv. 2003;21:383–393.
  • Gupta AK, Sinha S. 2006. Role of Brassica juncea L. Czern. (var. vaibhav) in the phytoextraction of Ni from soil amended with fly-ash: selection of extractant for metal bioavailability. J Hazard Mater 153:371–378.
  • Hambli R. 2009. Statistical damage analysis of extrusion processes using finite element method and neural networks simulation. Finite Elem Anal Des 10(45):640–649.
  • Harikrishnan H, Shanmugaiah V, Balasubramanian N, Sharma MP, Kotchoni SO. 2014. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J Microb Biotechnol 30:3149–3161.
  • Hattab N, Motelica-Heino M. 2014. Application of an inverse neural network model for the identification of optimal amendment to reduce copper toxicity in phytoremediated contaminated soils. J Geochem Explor 136:14–23.
  • He ZL, Yanga XE, Stoffellab PJ. 2005. Trace elements in agroecosystems and impacts on the environment. Review. J Trace Elem Med Biol 19:125–140.
  • Hirner AV. 1992. Trace element speciation in soils and sediments using sequential chemical extraction methods. Int J Environ Anal Chem 46:77–85.
  • Hrynkiewicz K, Baum C. 2012. The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E, editors. Environmental protection strategies for sustainable development. Strategies for Sustainability. Netherlands: Springer. p. 35–64.
  • Hrynkiewicz K, Baum C. 2014. Application of microorganisms in bioremediation of environment from heavy metals. In: Malik A, Grohmann E, Akhtar R, editors. Environmental deterioration and human health. Dordrecht (Netherlands): Springer Science + Buisness Media. p. 215–227.
  • Hrynkiewicz K, Baum C, Leinweber P, Weih M, Dimitriou I. 2010. The significance of rotation periods for mycorrhiza formation in Short Rotation Coppice. Forest Ecol Manage 260:1943–1949.
  • Hrynkiewicz K, Dąbrowska G, Baum C, Niedojadło K, Leinweber P. 2012. Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollut 223:957–968.
  • Hu Y, Liu X, Bai J, Shih K, Zeng EY, Cheng H. 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Pollut Res 20:6150–6159.
  • Karakaş B, Yildiz F. 2007. Peroxidation of membrane lipids in minimally processed cucumbers packaged under modified atmospheres. Food Chem 100:1011–1018.
  • Keller C. 2006. Factors limiting efficiency of phytoextraction at multi-metal contaminated sites. In: Morel JL, Echevarria G, Goncharova N., editors. Phytoremediation of metal-contaminated soils. Netherlands: Springer. p. 241–266.
  • Kayser et al. (2001); Kayser A, Schröder TJ, Grünwald A, Schulin R. 2001. Solubilization and plant uptake of zinc and cadmium from soils treated with elemental sulfur. Int J Phytorem 3–4:381–400.
  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44.
  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E. 2014. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut R 21:6845–6858.
  • Li X, Yang Y, Jia L, Chen H, Wei X. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157.
  • Malar S, Vikram SS, Favas PJC, Perumal V. 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:1–11. doi: 10.1186/s40529–014-0054-6.
  • Marian E. 1991. Metals and their compoundn environment, occurance, analysis and biological revelance. Weinheim (Germany): VCH.
  • Naseem S, Bashir E, Shireen K, Shafiq S. 2009. Soil–plant relationship of Pteropyrum olivieri, a serpentine flora of Wadh, Balochistan, Pakistan and its use in mineral prospecting. Stud UBB Geol 54:33–39.
  • Nyamangara J. 1998. Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agric Ecosyst Environ 69:135–141.
  • Ogar A, Sobczyk Ł, Turnau K. 2015. Effect of combined microbes on plant tolerance to Zn–Pb contaminations. Environ Sci Pollut R 22:19142–19156.
  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301.
  • Ostrowska A, Gawliński S, Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin., Warszawa (Poland): Instytut Ochrony Środowiska (in Polish)
  • Otte ML. 1991. Contamination of coastal wetlands with heavy metals: factors affecting uptake of heavy metals by salt marsh plants. In: Rozema J, Verkleij AC, editors. Ecological responses to environmental stresses. Kluwer Academic Publishers. p. 126–133.
  • Pereira SIA, Barbosa L, Castro PML. 2015. Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142.
  • Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149.
  • Rajkumar M, Sandhya S, Prasad MN, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotech Adv 30:1562–1574.
  • Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M. 2000. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233.
  • Robinson BH, Anderson CWN, Dickinson NM. 2015. Phytoextraction: Where's the action? J Geochem Explor 151:34–40.
  • Rodriguez RJ, White JFJ, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol 182:314–330.
  • Saha R, Saha N, Donofrio RS, Bestervelt LL. 2013. Microbial siderophores: a mini review. J Basic Microb 53:303–317.
  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126.
  • Sarma H. 2011. Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138.
  • Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by micorrhization. J Exp Bot 53:1351–1365.
  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT. 2012. Characterization of lead resistant endophytic Bacillus sp. MN3–4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320.
  • Shrivastava P, Kumar R, Yandigeri MS. 2017. In vitro biocontrol activity of halotolerant Streptomyces aureofaciens K20: a potent antagonist against Macrophomina phaseolina (Tassi) Goid. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2015.12.004
  • Sinha S, Mukherjee SK. 2008. Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60.
  • Siripornadulsil S, Siripornadulsil W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotox Environ Saf 94:94–103.
  • Sprynskyy M, Kowalkowski T, Cozmuta ML, Tutu H, Cukrowska EM, Buszewski B. 2011. The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil Sediment Contam 20:12–29.
  • Veljovic-Jovanovic S, Noctor G, Foyer CH. 2002. Area leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507.
  • Whiting SN, De Souza MP, Terry N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150.
  • Wieshammer G, Unterbrunner R, Bañares García T, Zivkovic MF, Puschenreiter M, Wenzel WW. 2007. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264.
  • Wilson B, Pyatt FB. 2007. Heavy metal dispersion, persistence, and bio-accumulation around an ancient copper mine situated in Anglesey, UK. Ecotox Environ Saf 66:224–231.
  • Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R. 2011. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytorem 13:788–804.
  • Yang W, Zhao F, Zhang X, Ding Z, Wang Y, Zhu Z, Yang X. 2015. Variations of cadmium tolerance and accumulation among 39 Salix clones: implications for phytoextraction. Environ Earth Sci 73:3263–3274.
  • Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34.
  • Złoch M, Kowalkowski T, Szymańska S, Hrynkiewicz K. 2014. Response of birch and alder root endophytes as well as rhizosphere and bulk soil microorganisms to heavy metal pollution. Pol J Ecol 62:37–53.
  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K. 2016. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd. Chemosphere 156:312–325.
  • Złoch M, Tyburski J, Hrynkiewicz K. 2015. Analysis of microbiologically stimulated biomass of Salix viminalis L. in the presence of Cd under in vitro conditions—Implications for phytoremediation. Acta Biol Cracov Ser Bot 57:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.