376
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms

, , , & ORCID Icon

References

  • Abbaszadeh-Dahaji P, Omidvari M, Ghorbanpour M. 2016. Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. inplant-microbe interaction: An approach to sustainable agriculture. Singapore: Springer. p. 187–204.
  • Apha. 2005. Standard methods for the examination of water and wastewater. 21:258–259.
  • Aravind R, Bharti VS, Rajkumar M, Pandey PK, Purushothaman CS, Vennila A, Shukla SP. 2016. Efficacy of chelating agents in phytoremediation of cadmium using Lemna minor (Linnaeus, 1753). Nat Environ Pollut Technol 15(2):509.
  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G. 2010. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376(9737):252–258.
  • Baldwin PR, Butcher DJ. 2007. Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J 85(2):297–300.
  • Basu A, Sen P, Jha A. 2015. Environmental arsenic toxicity in West Bengal, India: A brief policy review. Ind J Public Health 59(4):295–298.
  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucl Acids Res 41(D1):D36–D42.
  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytorem 18(1):25–32.
  • Chakravorty S, Helb D, Burday M, Connell N, Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339.
  • Chowdhury R, Chatterjee R, Giri AK, Mandal C, Chaudhuri K. 2010. Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression. Toxicol Lett 198(2):263–271.
  • Dąbrowska G, Hrynkiewicz K, Trejgell A, Baum C. 2016. The effect of plant-growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. Int J Phytorem 19(7):597–604.
  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1):323–330.
  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D. 2015. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212.
  • Ekkasit A. 2016. Increase of efficiency of phytoremediation for heavy metal removal by plant growth-promoting rhizobacteria. PhD thesis, Environmental Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
  • Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643.
  • Ghosh NC, Singh RD. 2009. Groundwater arsenic contamination in India: Vulnerability and scope for remedy. Technical Papers Included in the Special Session on Ground Water in the 5th Asian Regional Conference of INCID, December 9–11, 2009, Vigyan Bhawan, New Delhi. 2009. p. 1–23.
  • Guo W, Liu X, Liu Z, Li G. 2010. Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Proc Environ Sci 2:729–736.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station. p. 347 (2nd ed.).
  • Hu X, Zhang Y, Luo J, Wang T, Lian H, Ding Z. 2011. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ Pollut 159(5):1215–1221.
  • Ismail Z, Beddri AM. 2009. Potential of water hyacinth as a removal agent for heavy metals from petroleum refinery effluents. Water Air Soil Pollut 199(1–4):57–65.
  • Jaffe BD, Ketterer ME, Hofstetter RW. 2016. Terrestrial invertebrate arsenic accumulation associated with an arsenic hyperaccumulating fern, Pteris vittata (Polypodiales: Pteridaceae). Environ Entomol 45(5):1306–1315.
  • Kamal M, Ghaly AE, Mahmoud N, Cote R. 2004. Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039.
  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M. 2015. Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 6(5):755.
  • Kiziloglu FM, Turan M, Sahin U, Kuslu Y, Dursun A. 2008. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agric Water Manage 95(6):716–724.
  • Krayem M, Baydoun M, Deluchat V, Lenain JF, Kazpard V, Labrousse P. 2016. Absorption and translocation of copper and arsenic in an aquatic macrophyte Myriophyllum alterniflorum DC. in oligotrophic and eutrophic conditions. Environ Sci Pollut Res 23(11):11129–11136.
  • Kumar M, Puri A. 2012. A review of permissible limits of drinking water. Indian J Occup Environ Med 16(1):40.
  • Li J, Gyoten H, Sonoda A, Feng Q, Xue M. 2017. Removal of trace arsenic to below drinking water standards using a Mn–Fe binary oxide. RSC Adv 7(3):1490–1497.
  • Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258.
  • Ma Y, Rajkumar M, Zhang C, Freitas H. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25.
  • Masita MI. 2010. The extraction of papain enzymes from papaya leaves. Doctoral dissertation, Universiti Malaysia Pahang, Malaysia.
  • Meharg AA, Rahman MM. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234.
  • Mishra VK, Shukla R. 2016. Aquatic macrophytes for the removal of heavy metals from coal mining effluent. In: Phytoremediation, Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (Eds.) Springer International Publishing Switzerland. p. 143–156.
  • Mishra S, Maiti A. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review. Environ Sci Pollut Res 24(9):7921–7937.
  • Monachese M, Burton JP, Reid G. 2012. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Appl Environ Microbiol 78(18):6397–6404.
  • Mukherjee SC, Rahman MM, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Chakraborti D. 2003. Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J Environ Sci Health A 38(1):165–183.
  • Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA, Shakoor MB. 2017. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. Int J Phytorem 19(7):670–678.
  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24(5):533–542.
  • Paredes-Páliz KI, Caviedes MA, Doukkali B, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E. 2016. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environ Sci Pollut Res 23(19):19825–19837.
  • Pereira VJ, da Cunha JP, de Morais TP, de Oliveira JP, de Morais JB. 2016. Physical-chemical properties of pesticides: concepts, applications, and interactions with the environment. Biosci J 32(3):627–641.
  • Polya D, Charlet L. 2009. Environmental science: rising arsenic risk?. Nature Geosci 2(6):383–384.
  • Poonam, Upadhyay MK, Gautam A, Mallick S, Srivastava S. 2017. A successive application approach for effective utilization of three aquatic plants in arsenic removal. Water Air Soil Pollut 228(2):54.
  • Rahman MA, Reichman SM, De Filippis L, Sany SBT, Hasegawa H. 2016. Phytoremediation of toxic metals in soils and wetlands: Concepts and applications. In: Environmental remediation technologies for metal-contaminated soils. Japan: Springer. p. 161–195.
  • Saha P, Shinde O, Sarkar S. 2017. Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytorem 19(1):87–96.
  • Sarkar A, Paul B. 2016. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 158:37–49.
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.
  • Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Gnansounou E, Castro E, Faraco V. 2017. Water hyacinth a potential source for value addition: an overview. Bioresour Technol 230:152–162.
  • Singh NK, Raghubanshi AS, Upadhyay AK, Rai UN. 2016. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Ecotoxicol Environ Saf 130:224–233.
  • Sriprang R, Murooka Y. 2007. Accumulation and detoxification of metals by plants and microbes. In: Environmental bioremediation technologies. Berlin/Heidelberg: Springer. p. 77–100.
  • Stephenson C, Black CR. 2014. One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci. Horizons 7:hzu009.
  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599.
  • Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MF. 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):1–1.
  • Umysová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Machát J, Doucha J, Zachleder V. 2009. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9(1):1.
  • U.S. EPA. 1978. Microbiological methods for monitoring the environment, water and wastes. Environmental Monitoring and Support Laboratory, EPA/600/8-78/017. Cincinnati, OH: U.S. Environmental Protection Agency.
  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S. 2016. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manage 179:93–102.
  • Zhang SY, Liu AF, Ma JM, Zhou QH, Xu D, Cheng SP, Zhao Q, Wu ZB. 2010. Changes in physicochemical and biological factors during regime shifts in a restoration demonstration of macrophytes in a small hypereutrophic Chinese lake. Ecol Eng 36(12):1611–1619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.