229
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modelling

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 424-431 | Received 27 Mar 2016, Accepted 11 Jun 2017, Published online: 02 Apr 2018

References

  • Ahmed TF, Sushil M, Krishna M. 2012. Impact of dye industrial effluent on physicochemical characteristics of Kshipra River, Ujjain City, India. Int Res J Environ Sci. 1:41–45.
  • Armstrong JS, Collopy F. 1992. Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecasting. 8:69–80. https://doi.org/10.1016/0169-2070(92)90008-W.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15. https://doi.org/10.1104/pp.24.1.1. PMID:16654194.
  • Al-Shayea QK. 2011. Artificial neural networks in medical diagnosis. Int J Comput Sci Issues. 8:150–154.
  • Asl SH, Ahmadi M, Ghiasvand M, Tardast A, Katal R. 2013. Artificial neural network (ANN) approach for modeling of Cr (VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem. 19:1044–1055. https://doi.org/10.1016/j.jiec.2012.12.001.
  • Basheer IA, Hajmeer M. 2000. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods. 43:3–31. https://doi.org/10.1016/S0167-7012(00)00201-3. PMID:11084225.
  • Bello O, Inyinbor A, Dada A, Oluyori A. 2013. Impact of Nigerian textile industry on economy and environment: a review. Int J Basic Appl Sci. 13:98–106.
  • Cort JW, Kenji M. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 30:79–82. https://doi.org/10.3354/cr030079.
  • Crini G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol. 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001. PMID:15993052.
  • Dai L-P, Xiong Z-T, Huang Y, Li. M-J 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ Toxicol. 21:505–512. https://doi.org/10.1002/tox.20212. PMID:16944512.
  • Dietz AC, Schnoor JL. 2001. Advances in phytoremediation. Environ Health Perspect. 109:163. https://doi.org/10.1289/ehp.01109s1163. PMID:11250813.
  • Frijlink E, Touw D, Woerdenbag H. 2015. Biopharmaceutics. In Bouwman-Boer Y, Fenton-May VI, Le Brun P, editors. Practical pharmaceutics: an international guideline for the preparation, care and use of medicinal products. Cham: Springer International Publishing. p. 323–346.
  • Gunapala N, Amarasiri SL. 1983. Effect of addition of phosphorus on the growth of Azolla. Trop Agriculturist. 139:85–95.
  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The WEKA data mining software: an update. ACM SIGKDD Explor Newsl. 11:10–18. https://doi.org/10.1145/1656274.1656278.
  • Jain S, Vasudevan P, Jha N. 1990. Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Res. 24:177–183. https://doi.org/10.1016/0043-1354(90)90100-K.
  • Kaastra I, Boyd M. 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing. 10:215–236. https://doi.org/10.1016/0925-2312(95)00039-9.
  • Kant R. 2012. Textile dyeing industry an environmental hazard. Nat Sci. 4:22–26.
  • Khandare RV, Govindwar SP. 2015. Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv. 33:1697–1714. https://doi.org/10.1016/j.biotechadv.2015.09.003. PMID:26386310.
  • Kooh MRR, Dahri MK, Lim LBL, Lim LH. 2016. Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste. Arab J Sci Eng. 41:2453–2464. https://doi.org/10.1007/s13369-015-1877-5.
  • Kooh MRR, Dahri MK, Lim LBL, Lim LH, Malik OA. 2016. Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environ Earth Sci. 75:1–14. https://doi.org/10.1007/s12665-016-5582-9.
  • Kooh MRR, Lim LBL, Lim LH, Dahri MK. 2016. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environ Monit Assess. 188:1–15. https://doi.org/10.1007/s10661-016-5108-7. PMID:26627206.
  • Kooh MRR, Lim LBL, Dahri MK, Lim LH, Sarath Bandara JMR. 2015. Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste Biomass Valor. 6:547–559. https://doi.org/10.1007/s12649-015-9369-0.
  • Kooh MRR, Lim LBL, Lim LH, Bandara JMRS. 2016. Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalin Water Treat. 57:14632–14646. https://doi.org/10.1080/19443994.2015.1065450.
  • Lamm E, Unger R. 2011. Biological Computation. UK: Taylor and Francis Group, LLC.
  • Lechno-Yossef S, Nierzwicki-Bauer SA. 2002. Azolla-Anabaena Symbiosis. In Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht, Netherlands: Springer. p. 153–178.
  • Lucas RE, Davis JF. 1961. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92:177–182. https://doi.org/10.1097/00010694-196109000-00005.
  • Pilon-Smits. E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214. PMID:15862088.
  • Rai PK. 2008. Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation. 10:430–439. https://doi.org/10.1080/15226510802100606. PMID:19260224.
  • SIGMA-ALDRICH. [2016]. Methyl Violet 2B [Material Safety Data Sheet] Version 5.0. Available at http://www.sigmaaldrich.com
  • Torbati S. 2015. Feasibility and assessment of the phytoremediation potential of duckweed for triarylmethane dye degradation with the emphasis on some physiological responses and effect of operational parameters. Turkish J Biol. 39:438–446. https://doi.org/10.3906/biy-1411-23.
  • Vafaei F, Khataee AR, Movafeghi A, Salehi Lisar SY, Zarei M. 2012. Bioremoval of an azo dye by Azolla filiculoides: study of growth, photosynthetic pigments and antioxidant enzymes status. Int Biodeterior Biodegradation. 75:194–200. https://doi.org/10.1016/j.ibiod.2012.09.008.
  • Vijayaraghavan K. 2016. Biosorption of metals: a complete handbook. Chennai, India: Vinanie Publishers.
  • Wagner GM. 1997. Azolla: a review of its biology and utilization. Bot Rev. 63:1–26. https://doi.org/10.1007/BF02857915.
  • White HL. 1936. The interaction of factors in the growth of Lemna: VII. The effect of potassium on growth and multiplication. Ann Bot. 50:175–196. https://doi.org/10.1093/oxfordjournals.aob.a090581.
  • Zhang G, Patuwo BE, Hu. MY 1998. Forecasting with artificial neural networks: the state of the art. Int J Forecasting. 14:35–62. https://doi.org/10.1016/S0169-2070(97)00044-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.