162
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Lead phytoextraction from printed circuit computer boards by Lolium perenne L. and Medicago sativa L.

, , , &

References

  • Abusriwil LM, Hamuda HB, Elfoughi AA. 2011. Seed germination, growth and metal uptake of Medicago sativa L. grown in heavy metal contaminated clay loam brown forest sol. Tájökológiai Lapok. 89:111–25.
  • Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA. 2010. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut. 207:195–201. 20. doi:10.1007/s11270-009-0128-3.
  • Arshadi M, Mousavi SM. 2014. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization. Bioresour. Technol. 174:233–42. doi:10.1016/j.biortech.2014.09.140.
  • Asante KA, Agusa T, Subramanian A, Ansa-Asare OD, Biney CA, Tanabe S. 2007. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere. 66:1513–22. doi:10.1016/j.chemosphere.2006.08.022.
  • Asante KA, Agusa T, Biney CA, Agyekum WA, Bello M, Otsika M, Itai T, Takahashi S, Tanabe S. 2012. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. Sci. Total Environ. 424:63–73. doi:10.1016/j.scitotenv.2012.02.072.
  • Aslam S, Sharif F, Khan AU. 2015. Effect of lead and cadmium on growth of Medicago sativa L. and their transfer to food chain. J. Anim. Plant. Sci. 25:472–77.
  • Bhargava A, Carmona F, Bhargava M. 2012. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105:103–20. doi: 10.1016/j.jenvman.2012.04.002.
  • Boonyapookana B, Parkpian P, Techapinyawat S, DeLaune RD. 2005. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health A Tox Hazard Subst Environ Eng. 40:117–37. doi:10.1081/ESE-200033621.
  • Brandl H, Bosshard R, Wegmann M. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59:319–26. doi:10.1016/S1572-4409(99)80146-1.
  • Brandl H, Faramarzi MA. 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Part. 4:93–97. doi:10.1016/S1672-2515(07)60244–9.
  • Chen Y, Shena Z, Li X. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem. 19:1553–65. doi:10.1016/j.apgeochem.2004.02.003.
  • Chibuike GU, Obiora SC. 2014. Heavy Metal Polluted Soils: E ffect on Plants and Bioremediation Methods. Appl. Environ. Microb. 14:1–12. doi:10.1155/2014/752708.
  • Chirakkara RA, Reddy KR. 2015. Plant species identification for phytoremediation of mixed contaminated soils. J. of Hazard. Toxic Radioact. Waste. 19:040150041–0401500410.
  • Dikilitas M, Karakas S, Ahmad P. 2016. Effect of lead on plant and human DNA damages and its impact on the environment. In: Ahmad P, editor. Plant metal interaction. Ámsterdam (The Netherlands): Elsevier Inc. p. 41–67. doi:10.1016/B978-0-12-803158-2.00003-5.
  • Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A. 2013. Effect of lead on root growth. Front. Plant Sci. 4:1–7. doi:10.3389/fpls.2013.00175.
  • Ghori Z, Iftikhar H, Bhatti M, Munullah N, Sharma I, Kazi AG, Ahmad P. 2016. Phytoextraction: The use of plants to remove heavy metals from soil. In Ahmad P, editor. Plant metal interaction. Amsterdan (The Netherlands): Elsevier Inc. p. 385–409. doi:10.1016/B978-0-12-803158-2.00015-1.
  • Gunawardana B, Singhal N, Johnson A. 2011. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Int. J. Phytorem. 13:215–32. doi:10.1080/15226510903567448.
  • Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, Zheng G, Xiao Q, Yang H, Wang Y, et al. 2010. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci. Total Environ. 408:3113–17. doi:10.1016/j.scitotenv.2010.04.018.
  • Ha NN, Agusa T, Ramu K, Tcam TNP, Murata S, Bulbule KA, Parthasaraty P, Takahashi S, Subramanian A, Tanabe S. 2009. Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere. 76:9–15. doi:10.1016/j.chemosphere.2009.02.056.
  • Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernndez LE, Banni M. 2016. Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ. Exp. Bot. 123:1–12. doi:10.1016/j.envexpbot.2015.10.005.
  • He S, Wu Q, He Z. 2013. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere. 93:2782–88. doi:10.1016/j.chemosphere.2013.09.037.
  • Jhonson J. 1998. The genetic effects of environmental lead. Mutat. Res. 410:123–40. doi:10.1016/S1383-5742(97)00032-X.
  • Kamari A, Pulford ID, Hargreaves JSJ. 2012. Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int. J. Phytorem. 14:894–907. doi:10.1080/15226514.2011.636401.
  • Karwowska E, Wojtkowska M, Andrzejewska D. 2015. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria. J. Hazard. Mater. 299:35–41. doi:10.1016/j.jhazmat.2015.06.006.
  • Kiddee P, Naidu R, Wong MH. 2013. Electronic waste management approaches: An overview. Waste Manage. 33:1237–50. doi:10.1016/j.wasman.2013.01.006.
  • Lim J, Salido AL, Butcher DJ. 2004;Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J. 76:3–9. doi:10.1016/j.microc.2003.10.002.
  • Luda MP. 2011. Recycling of printed circuit boards. In: Mr. Kumar S (Eds.). integrated waste management. Vol. II. Shanghai, (China): Publisher In Tech. p. 285–297.
  • Mattina MI, Lannucci BW, Musante C. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. J. Environ Pollut. 124:375–378.
  • McComb J, Hentz S, Miller GS, Begonia M, Begonia G. 2012. Effects of lead on plant growth, lead accumulation and phytochelatin contents of hydroponically-grown Sesbania Exaltata. World Environ. 2:38–43. doi:10.5923/j.env.20120203.04.
  • McGrath SP, Zhao F. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14:277–82. doi:10.1016/S0958-1669(03)00060-0.
  • Mench M, Martin E. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil. 132:187–96. doi:10.1007/BF00010399.
  • Mohan D, Bhamawat PMK. 2008. E-waste management-global scenario: A Review. J. Environ. Res. Dev. 2:817–23.
  • Nezami MT, Kalantari M. 2013. Phytoremediation of heavy metals (lead and zinc) by three plant species; grass pea (Lathyrus sativus), Alfalfa (Medicago sativa), and Vetch flower cluster (Vicia villosa), and the role of mycorrhiza (Glomus intraradices).Tech. J. Engin. App. Sci. 6:460–64.
  • Oguchi M, Murakami S, Sakanakura H, Kida A, Kameya T. 2011; A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manage.31:2150–60. doi:10.1016/j.wasman.2011.05.009.
  • Pant D, Joshi D, Upreto M, Kotnala RK. 2012. Chemical and biological extraction of metals present in e-waste: A hybrid technology. Waste Manage. 33:979–90. doi:10.1016/j.wasman.2011.12.002.
  • Peng H, Reid MS, Le CX. 2015. Consumption of rice and fish in an electronic waste recycling area contributes significantly to total daily intake of mercury. J. Environ. Sci. 38:83–86. doi:10.1016/j.jes.2015.10.003.
  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A. 2002. Accumulation and detoxification of lead ions in legumes. Phytochemistry. 60:153–62.
  • Polechońska L, Klink A. 2010. Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass). J. Geochem. Explor. 146:27–33.
  • Poniedzialek M, Sekara A, Jedrszczyk E, Ciura J. 2010. Phytoremediation efficiency of crop plants in removing cadmium, lead and zinc from soil. Folia Hort. 22:25–31.
  • Prieto-Méndez J, González RC, Gutiérrez RA, Prieto-García F. 2009. Plant contamination and phytotoxicity due to heavy metals from soil and water. Tropical and Subtropical Agroecosystems. 10:29–44.
  • Rajarao R, Sahaiwalla V, Cayumil R, Park M, Khanna R. 2014. Novel approach for processing hazardous electronic waste. Procedia Environ. Sci. 21:33–41. doi:10.1016/j.proenv.2014.09.005.
  • Ruiz E, Rodríguez L, Alonso-Azcárate J, Rincón J. 2009. Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. Int. J. Phytorem. 11:360–84. doi:10.1080/15226510802565568.
  • Samardakiewicz S, Krzeslowska M, Bilski H, Bartosiewicz R, Wozny A. 2012. Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma. 249:347–351. doi 10.1007/s00709-011-0285-2.
  • Sthiannopkao S, Wong MH. 2013. Handling e-waste in developed and developing countries: Initiatives, practices, and consequences. Sci. Total Environ. 463:1147–53. doi:10.1016/j.scitotenv.2012.06.088.
  • Tang W, Cheng J, Zhao W, Wang W. 2015. Mercury levels and estimated total daily intakes for children and adults from an electronic waste recycling area in Taizhou, China: Key role of rice and fish consumption. J. Environ. Sci. 34:107–15. doi:10.1016/j.jes.2015.01.029.
  • Tanskanen P. 2013. Management and recycling of electronic waste. Acta Mater. 61:1001–11. doi:10.1016/j.actamat.2012.11.005.
  • Viet HM, Bernardes MM. 2015. Electronic waste: Generation and management. In: Viet HM, Bernardes MM. (eds.). Electronic waste, recycling techniques. (Switzerland): Springer International Publishing. p 3–12. doi 10.1007/978-3-319-15714-62.
  • Wang F, Li Y. 2015. Phytoremediation of cadmium, lead and zinc by Medicago sativa L. (alfalfa): A study of different period. Bulg. Chem. Commun. 47:167–72.
  • Wang X, Shan X, Zhang S, Wen B. 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere. 55:811–22. doi:10.1016/j.chemosphere.2003.12.003.
  • Wei L, Liu Y. 2012. Present status of e-waste disposal and recycling in China. Procedia Environ. Sci. 16:506–14. doi:10.1016/j.proenv.2012.10.070.
  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H. 2005. Global perspectives on e-waste. Environ. Impact Assess. Rev. 25:436–58. doi:10.1016/j.eiar.2005.04.001.
  • Xu X, Yang H, Chen A, Zhou Y, Wu K, Liu J, Zhang Y, Hou X. 2012. Birth outcomes related to informal e-waste recycling in Guiyu, China. Reprod Toxicol. 33:94–98. doi:10.1016/j.reprotox.2011.12.006.
  • Yamane LH, De Moraes VT, Espinosa DCR, Tenorio SJA. 2011. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Manage. 31:2553–58. doi:10.10.16/j.wasman.2011.07.006.
  • Zhao FJ, Lombi E, McGrath S.P. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 249:37–43.
  • Zheng L, Wu K, Li Y, Qi Z, Han D, Zhang B, Gu C, Chen G, Lui J, Chen S, et al. 2008. Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ. Res. 108:15–20. doi:10.1016/j.envres.2008.04.002.
  • Zheng H, Chen K, Yan X, Chen SJ, Hu GC, Peng XW, Yuan JJ, Mai BX, Yang ZY. 2013. Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotox. Environ. Safe. 96:205–12. doi:10.1016/j.ecoenv.2013.06.017.
  • Zhi-Xin N, Li-na S, Tie-heng S, Yu-shuang L, Hong W. 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci. 19:961–67. doi:10.1016/S1001-0742(07)60158-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.