376
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Phytotoxicity of tin mine waste and accumulation of involved heavy metals in common buckwheat (Fagopyrum esculentum Moench)

, , , , &

References

  • Alirzayeva E, Neumann G, Horst W, Allahverdiyeva Y, Specht A, Alizade V. 2016. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. Environ Pollut 220:1024–1035.
  • Ashraf MA, Maah MJ, Yussuf I. 2011. Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8:401–416.
  • Bonafaccia G, Gambelli L, Fabjan N, Kreft I. 2003. Trace elements in flour and bran from common and tartary buckwheat. Food Chem 83:1–5.
  • BMBF. 2013. r3 – Strategische Metalle und Mineralien – Innovative Technologien für Ressourceneffizienz. 54 p. https://www.fona.de/mediathek/r3/pdf/131126_r3_Broschuere_barrierefrei.pdf. Accessed on Nov. 20, 2016.
  • Büttner P. 2016. Average element concentrations of mine waste deposits in Altenberg. Unpublished Report.
  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Alharby H, Shahid M. 2017. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environ Sci Pollut Res Int. doi: 10.1007/s11356-017-8462-2
  • Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola. JI, Garbisu C, Becerril. JM. 2011. Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. Int J Phytoremediation 13:256–270.
  • Clemens S, Jiang Feng Ma. 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512.
  • Cundy AB, Bardosa RP, Churcha A, Puschenreiter M, Friesl-Hanld W, Müller I, Neue S, Mench M, Witters N, Vangronsveld J. 2013. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J Environ Manage 129:283–291.
  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ. 2005. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:191–198.
  • DECHEMA. 2013. Geobiotechnologie – Stand und Perspektiven. Ein Statuspapier des Temporären Arbeitskreises Geobiotechnologie in der DECHEMA e.V., 52 p. http://dechema.de/Geobiotechnologie/_/Statuspapier%20Geobiotechnologie.pdf. Accessed on Nov. 20, 2016.
  • Franzaring J, Schlosser S, Damsohn W, Fangmeier A. 2016. Regional differences in plant levels and investigations on the phytotoxicity of lithium. Environ Pollut 216:858–865.
  • Goolsby EW, Mason CM. 2015. Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33.
  • Gough LP, Shacklette HT, Case AA. 1979. Element Concentrations Toxic to Plants, Animals, and Man. Geological Survey Bulletin 1466:1–80. Library of Congress catalog-card No. 79–66277.
  • Honda M, Tamura H, Kimura T, Kinoshita T, Mastsufuru H, Sasto T. 2007. Control of lead polluted leachate in a box-scale phytoremediation test using common buckwheat (Fagopyrum esculentum Moench) grown on lead contaminated soil. Env Technol 28:425–431.
  • Hladun KR, Parker DR, Trumble JT. 2015. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. J Chem Ecol 41:386–95.
  • Horbowicz M., Kowalczyk W, Grzesiuk A, Mitrus J. 2011. Uptake of aluminium and basic elements, and accumulation of anthocyanins in seedlings of common buckwheat (Fagopyrum esculentum Moench) as a result increased level of aluminium in nutrient solution. Ecol Chem and Engineering S 18: 479–488.
  • Katoh M, Matsuoka H, Sato T. 2015. Stability of lead immobilized by apatite in lead-containing rhizosphere soil of buckwheat (Fagopyrum esculentum) and hairy vetch (Vicia villosa). Int J of Phytoremediation 17:604–611.
  • Lee S, Kim S, Kim S, Lee I. 2013. Assessment of phytotoxicity of ZnO NPs on a medicinal plant. Fagopyrum esculentum. Environ Sci Pollut Res Int. h 20: 848–854.
  • Lutt S, Lefèvre I. 2015. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528.
  • Likar M, Bukovnik U, Kreft I, Chrungoo NK, Regvar M. 2008. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Mycorrhiza 18:309–315.
  • Ma JF, Hiradate S, Matsumoto H. 1998. High aluminum resistance in buckwheat. II. oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759.
  • Markert B. 1992. Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut 64:533–538.
  • Nikolić DB, Samardzić JT, Bratić AM, Radin IP, Gavrilović SP, Rausch T, Maksimović VR. 2010. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments. J Agric Food Chem 58:3488–94.
  • Pohontu CM. 2013. Rehabilitation of degraded soils containing Lead (Pb2+) ions based on phytoremediation with Fagopyrum esculentum Moench in presence of Ethylene-diamine-tetracetic acid (EDTA). Advances in Environment, Ecosystems and Sustainable Tourism 84–96. Available at: http://www.wseas.us/e-library/conferences/2013/Brasov/STAED/STAED-13.pdf Accessed on Apr. 28, 2017.
  • Regvar M, Bukovnik U, Likar M, Kreft I. 2012. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Cent Eur J Biol 7:275–283. doi: 10.2478/s11535-012-0017-4.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci 180:169–181.
  • R Development Core Team. 2008. R: A language and environment for statistical computing. Vienna, (Austria). R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org.
  • Ritz C, Streibig JC. 2005. Bioassay Analysis using R. J Stat Softw 12: 22.
  • Reimann C, Birke M, Demetriades A, Filzmoser P, O'Connor P. 2014. Chemistry of Europe's Agricultural Soils. Part A. Geologisches Jahrbuch Reihe B 102: 519.
  • Shen R, Ma JF. 2001. Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687.
  • Shen RF, Chen RF, Ma JF, 2006. Buckwheat accumulates aluminum in leaves but not in seeds. Plant Soil 284:265–271.
  • Sheoran V, Sheoran AS, Poona P. 2009 Phytomining: a review. Min Eng 22:1007–1019.
  • Tamura H, Honda M, Sato T, Kamachi H. 2005. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118:355–359.
  • Teng-Hao-Bo D, Tang YT, van der Ent A, Sterckeman T, Echevarria G, Morel J-L, Qiu RL. 2016. Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45.
  • Tompkins DS, Bakar BB, Hill JS. 2012. Artificial soils from alluvial tin mining wastes in Malaysia – A study of soil chemistry following experimental treatments and the impact of mycorrhizal treatment on growth and foliar chemistry. J Environ Monit 14:279–291.
  • van der Ent A., Baker AM, Reeves R, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334.
  • Vollmann J, Lošák T, Pachner M, Watanabe D, Musilová L, Hlušek J. 2015. Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203:177–184.
  • Wedepohl KH. 1995. The composition of the continental crust. Geochim Cosmochim Acta 5:1217–1232.
  • Zaidi A, Wani PA, Khan MS. 2012. (eds.) Toxicity of heavy metals to legumes and bioremediation 248 S. Vienna: Springer. doi:10.1007/978-3-7091-0730-0.
  • Zhou M, Kreft I, Woo S-H, Chrungoo N, Wieslander G. 2016. Molecular breeding and nutritional aspects of buckwheat. Oxford: Academic Press. p. 482

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.