210
Views
9
CrossRef citations to date
0
Altmetric
Articles

Arsenic, lead and cadmium removal potential of Pteris multifida from contaminated water and soil

, , , &

References

  • An ZZ, Huang ZC, Lei M, Liao XY, Zheng YM, Chen TB. 2006. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. Chemosphere. 62:796–802. https://doi.org/10.1016/j.chemosphere.2005.04.084. PMID:15987653
  • Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology. 2008;6:26. https://doi.org/10.1186/1741-7007-6-26. PMID:18544156
  • Briat JF, Lebrun M. 1999. Plant responses to metal toxicity. Comptes Rendus de l0 Académie des Sciences – Series III – Sciences de la Vie. 322:43–54.
  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D. 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect. 108(5):393–397. https://doi.org/10.1289/ehp.00108393. PMID:10811564
  • Cui YL, Zhu YG, Zhai RH, Chen DY, Huan YZ, Qiu Y, Liang JZ. 2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int. 30:785–791. https://doi.org/10.1016/j.envint.2004.01.003. PMID:15120196
  • Dhir B, Srivastava S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecological Engineering. 37:893–896. https://doi.org/10.1016/j.ecoleng.2011.01.007.
  • Du W, Li ZA, Zou B, Peng S. 2005. Pteris multifida Poir., a new arsenic hyperaccumulator: characteristics and potential. International journal of environment and pollution. 23(4):388–396. https://doi.org/10.1504/IJEP.2005.007601.
  • Gisbert G, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Commun. 303:440–445. https://doi.org/10.1016/S0006-291X(03)00349-8.
  • Goyer RA. Toxic effects of metals. 2001. In CD Klaassen editor. Cassarett and Doull's toxicology: the basic science of poisons. New York: McGraw-Hill Publisher. p. 811–867.
  • Hanif A, Bhatti HN, Hanif MA. 2009. Removal and recovery of Cu(II) and Zn(II) using immobilized Mentha arvensis distillation waste biomass. Ecol. Eng. 35:1427–1434. https://doi.org/10.1016/j.ecoleng.2009.05.013.
  • Hatayama M, Sato T, Shinoda K, Inoue C. 2011. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. J Biosci Bioeng. 111(3):326–332. https://doi.org/10.1016/j.jbiosc.2010.11.004. PMID:21185228
  • Hertz-Picciotto I. 2000. The evidence that lead increases the risk for spontaneous abortion. Am J Ind Med. 38:300–309. https://doi.org/10.1002/1097-0274(200009)38:3%3c300::AID-AJIM9%3e3.0.CO;2-C%2010.1002/1097-0274(200009)38:3%3c300::AID-AJIM9%3e3.3.CO;2-3. PMID:10940968
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil.California Agricultural Experiment Station – Circular. 347:1–32.
  • Huang JWW, Poynton CY, Kochian L V, Elless MP. 2004. Phytofiltration of arsenic from drinking water using an arsenic-hyperaccumulating fern, Environ. Sci. Technol. 38:3412–3417. https://doi.org/10.1021/es0351645.
  • Huang Y, Hatayama M, Inoue C. 2011. Characterization of As efflux from the roots of Ashyperaccumulator Pteris vittata L. Planta. 234:1275–1284. https://doi.org/10.1007/s00425-011-1480-2. PMID:21789508
  • Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16. https://doi.org/10.1016/S0378-4274(02)00084-X. PMID:12076506
  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K. 2005. Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicol Lett. 159(2):192–201. https://doi.org/10.1016/j.toxlet.2005.05.011. PMID:16006079
  • Jeke NN, Zvomuya F, Ross L. 2016. Accumulation and partitioning of biomass, nutrients and trace elements in switchgrass for phytoremediation of municipal biosolids. Int J Phytoremediation. 18(9):892–899. https://doi.org/10.1080/15226514.2016.1156634. PMID:26940512
  • Kachenko A.G, Singh B, Bhatia NP. 2007. Heavy metal tolerance in common fern species. Australian Journal of Botany. 55, 63–73.
  • Kaul B, Sandhu RS, Depratt C, Reyes F. 1999. Follow-up screening of lead-poisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environ Health Perspect. 107(11):917–920. https://doi.org/10.1289/ehp.99107917. PMID:10544160
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature. 409:579. https://doi.org/10.1038/35054664. PMID:11214308
  • Mandal A, Purakayastha TJ, Patra AK, Sanyal SK. 2012. Phytoremediation of arsenic-contaminated soil by Pteria vittata L. I. Influence of phosphatic fertilizers and repeated harvests. Int J Phytoremed. 14(10):978–995. https://doi.org/10.1080/15226514.2011.649433.
  • Meng XG, Korfiatis GP, Jing C, Christodoulatos C. 2001. Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ Sci Technol. 35:3476–3481. https://doi.org/10.1021/es010645e. PMID:11563649
  • Natarajan S, Stamps RH, Saha UK, and Ma L. Q. 2008. Phytofiltration of arseniccontaminated groundwater using Pteris vittata L.: effect of plant density and nitrogen and phosphorus levels, Int. J. Phytoremediation. 10:222–235. https://doi.org/10.1080/15226510801997754.
  • Natarajana S, Stamps RH, Ma LQ, Saha UK, Hernandez D, Cai Y, Zillioux EJ. 2011. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: Effects of frond harvesting regimes and arsenic levels in refill water. J Hazard Mater. 185(2–3):983–989. https://doi.org/10.1016/j.jhazmat.2010.10.002. PMID:21051137
  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM. 2008. Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.). Chemical Engineering Journal. ; 145:179–184. https://doi.org/10.1016/j.cej.2008.03.014.
  • Ronzan M, Zanella L, Fattorini L, Della Rovere F, Urgast D, Cantamessa S, … Feldmann J. 2017. The morphogenic responses and phytochelatin complexes induced by arsenic in Pteris vittata change in the presence of cadmium. Environmental and Experimental Botany. 133:176–187. https://doi.org/10.1016/j.envexpbot.2016.10.011.
  • Rozas MA, Alkorta I, Garbisu C. 2006. Phytoextraction and phytofiltration of arsenic. Rev Environ Health. 21(1):43–56. https://doi.org/10.1515/REVEH.2006.21.1.43. PMID:16700429
  • Selamat SN, Abdullah SRS, Idris M. 2014. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytoremediation. 16(7–8):694–703. https://doi.org/10.1080/15226514.2013.856843. PMID:24933879
  • Sugawara K, Chein M-F, Inoue C. 2015. Evaluation of arsenic behavior in temperate-zone plant, Pteris multifida. Paper presented at: 12th International Phytotechnologies Conference; September 27–30; Manhattan, Kansas, USA.
  • Su YH, McGrath SP, Zhu YG, Zhao FJ. 2008. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol. 180:434–441 https://doi.org/10.1111/j.1469-8137.2008.02584.x. PMID:18662326
  • Tu C, Ma LQ, Bondada B. 2002. Arsenic accumulation in the hyperaccumulator Chinese Brake and its utilization potential for phytoremediation. J Environ Qual. 31(5):1671–1675. https://doi.org/10.2134/jeq2002.1671. PMID:12371185
  • Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ. Pollut. 122:323–342.
  • Wan XM, Lei M, Huang ZC, Chen TB, Liu YR. 2009. Sexual propagation of Pteris Vittata L. influenced by pH, calcium, and temperature. Int J Phytoremediation. 12(1):85–95. https://doi.org/10.1080/15226510902767148.
  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP. 2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology. 130:1552–1561. https://doi.org/10.1104/pp.008185. PMID:12428020
  • Wu FY, Ye ZH, Wu SC, Wong MH. 2007. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta. 226:1363–1378. https://doi.org/10.1007/s00425-007-0575-2. PMID:17624548
  • Wu FY, Leung HM, Wu SC, Ye ZH, Wong MH. 2009. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China. Environ Pollut. 157(8):2394–2404. https://doi.org/10.1016/j.envpol.2009.03.022. PMID:19371990
  • Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH. 2010. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Applied Soil Ecology. ;44:213–218. https://doi.org/10.1016/j.apsoil.2009.12.008.
  • Xue P, Li G, Liu W, Yan C. 2010. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere. 81:1098–1103. https://doi.org/10.1016/j.chemosphere.2010.09.023. PMID:20934737
  • Zheng MX, Xu JM, Smith L, Naidu R. 2003. Why a fern (Pteris multifida) dominantly growing on an arsenictheavy metal contaminated soil does not accumulate arsenic?. In Journal de Physique IV (Proceedings) (Vol. 107:1409–1411). EDP sciences. https://doi.org/10.1051/jp4:20030566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.