1,227
Views
71
CrossRef citations to date
0
Altmetric
Articles

Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium

ORCID Icon, , , , &

References

  • Aibibu NA, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L. 2010. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol. 101:6297–6303. https://doi.org/10.1016/j.biortech.2010.03.028.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere. 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075.
  • Ban Y, Xu Z, Zhang H, Chen H, Tang M. 2015. Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Ann Microbiol. 65:503–515. https://doi.org/10.1007/s13213-014-0886-z.
  • Caravaca F, Alguacil MM, Torres P, Roldán A. 2005. Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma. 124:375–382. https://doi.org/10.1016/j.geoderma.2004.05.010.
  • Chander K, Dyckmans J, Joergensen R, Meyer B, Raubuch M. 2001. Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soils. 34:241–247. https://doi.org/10.1007/s003740100406.
  • Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z. 2002.Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chin Sci Bull. 47:902–905. https://doi.org/10.1360/02tb9202.
  • Ciarkowska K, Sołek-Podwika K, Wieczorek J. 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J Environ Manage. 132:250–256. https://doi.org/10.1016/j.jenvman.2013.10.022.
  • Ciarkowska K. 2015. Heavy metal contamination of soils. Chapter 8 Enzyme activities in soils contaminated with heavy metals in varying degrees. Soil Biol. 44:145–158. https://doi.org/10.1007/978-3-319-14526-6_8.
  • Clemens S, Palmgren MG, Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7:309–315. https://doi.org/10.1016/S1360-1385(02)02295-1.
  • Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y. 2015. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol. 99:8259–8269. https://doi.org/10.1007/s00253-015-6662-6.
  • Doelman P, Haanstra L. 1986. Short- and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils. 2:213–218. https://doi.org/10.1007/BF00260846.
  • Epelde L, Becerril JM, Barrutia O, Gonzálezoreja JA, Garbisu C. 2010. Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut. 158:1576–1583. https://doi.org/10.1016/j.envpol.2009.12.013.
  • Fan KC, Hsi HC, Chen CW, Lee HL, Hseu ZY. 2011. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J Environ Manage. 92:2818–2822. https://doi.org/10.1016/j.jenvman.2011.06.032.
  • Fiorentino N, Impagliazzo A, Ventorino V, Pepe O, Piccolo A, Fagnano M. 2010. Biomass accumulation and heavy metal uptake of giant reed on a polluted soil in Southern Italy. J Biotechnol. 150:261.https://doi.org/10.1016/j.jbiotec.2010.09.155.
  • Frankeberger WT, Johanson JB. 1983. Method of measuring invertase activity in soils. Plant Soil. 74:301–311. https://doi.org/10.1007/BF02181348.
  • Gao L, Shen GM, Zhang JG. 2015. Accumulation and distribution of cadmium in flue-cured tobacco and its impact on rhizosphere microbial community. Pol J Environ Stud. 24:1563–1569. https://doi.org/10.15244/pjoes/39704.
  • Gao Y, Miao C, Xia J, Mao L, Wang Y, Zhou P. 2012. Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Front Environ Sci Eng. 6: 213–223. https://doi.org/10.1007/s11783-011-0345-z.
  • Guo B, Dai S, Wang R, Guo J, Ding Y, Xu Y. 2015. Combined effects of elevated CO2 and Cd-contaminated soil on the growth, gas exchange, antioxidant defense, and Cd accumulation of poplars and willows. Environ Exp Bot. 115:1–10. https://doi.org/10.1016/j.envexpbot.2015.02.002.
  • Guo Z, Megharaj M, Beer M, Ming H, Mahmudur RM, Wu W, Naidu R. 2009. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol. 100:3831–3836. https://doi.org/10.1016/j.biortech.2009.02.043.
  • Guo Z, Miao X. 2010. Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Cent South Univ Technol. 17:770–777. https://doi.org/10.1007/s11771-010-0555-8.
  • Hassan SED, Boon E, St-Arnaud M, Hijri M. 2011. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol. 20:3469–3483. https://doi.org/10.1111/j.1365-294X.2011.05142.x.
  • Hechmi N, Ben AN, Abdenaceur H, Jedidi N. 2015. Uptake and bioaccumulation of pentachlorophenol by emergent wetland plant Phragmites australis (common reed) in cadmium co-contaminated soil. Int J Phytoremediation. 17:109–116. https://doi.org/10.1080/15226514.2013.851169.
  • Ho JR, Ma HW, Wang YC, Ko CH, Chang FC, Feng FL, Wang YN. 2014. Extraction of heavy metals from contaminated soil by Cinnamomum camphora. Ecotoxicology. 23:1987–1995. https://doi.org/10.1007/s10646-014-1326-3.
  • Hu XF, Jiang Y, Shu Y, Hu X, Liu LM, Luo F. 2014. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy soils. J Geochem Explor. 147:139–150. https://doi.org/10.1016/j.gexplo.2014.08.001.
  • Hu YN, Wang DX, Wei LJ, Zhang XP, Song B. 2014. Bioaccumulation of heavy metals in plant leaves from Yan'an city of the Loess Plateau, China. Ecotoxicol Environ Saf. 110:82–88. https://doi.org/10.1016/j.ecoenv.2014.08.021.
  • Jing YD, He ZL, Yang XE. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B. 8:192–207. https://doi.org/10.1631/jzus.2007.B0192.
  • Khan S, Cao Q, Hesham A, Xia Y, He JZ. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J Environ Sci (China). 19:834–840. https://doi.org/10.1016/S1001-0742(07)60139-9.
  • Kourtev PS, Ehrenfeld JG, Häggblom M. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem. 35:895–905. https://doi.org/10.1016/S0038-0717(03)00120-2.
  • Li J, Jin Z, Gu Q. 2011. Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead-zinc mine tailings in Zhejiang, China. Can J Microbiol. 57:569–577. https://doi.org/10.1139/w11-054.
  • Li X, Huang L, Bond PL, Lu Y, Vink S. 2014. Bacterial diversity in response to direct revegetation in the Pb-Zn-Cu tailings under subtropical and semi-arid conditions. Ecol Eng. 68:233–240. https://doi.org/10.1016/j.ecoleng.2014.03.044.
  • Lindsay WL, Norvell WA. 1978.Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42:421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
  • Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y. 2015. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol. 89:44–49. https://doi.org/10.1016/j.apsoil.2015.01.006.
  • Liu J, Zhou Q, Sun T, Ma LQ, Wang S. 2008. Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mater. 151:261–267. https://doi.org/10.1016/j.jhazmat.2007.08.016.
  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z. 2011. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J Agric Food Chem. 59:8324–8330. https://doi.org/10.1021/jf201454w.
  • Liu YN, Guo ZH, Xiao XY, Wang S, Jiang ZC, Zeng P. 2017. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment. Sci Total Environ. 576:292–302. https://doi.org/10.1016/j.scitotenv.2016.10.065.
  • Luković J, Merkulov L, Pajević S, Zorić L, Nikolić N, Borišev M, Karanović D. 2012. Quantitative assessment of effects of cadmium on the histological structure of poplar and willow leaves. Water Air Soil Pollut. 223:2979–2993. https://doi.org/10.1007/s11270-012-1081-0.
  • Luo J, Qia S, Peng L, Wang J. 2016. Phytoremediation efficiency of Cd by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int J Phytoremediation. 18:308–314. https://doi.org/10.1080/15226514.2015.1094446.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic: a hardy, versatile, fast growing plant helps to remove arsenic from contaminated soils. Nature. 409:579.https://doi.org/10.1038/35054664.
  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM. 2013. Inoculating helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria – effects on phytoremediation strategies. Chemosphere. 92(1):74–83. https://doi.org/10.1016/j.chemosphere.2013.02.055.
  • Martínez-Iñigo MJ, Pérez-Sanz A, Ortiz I, Alonso J, Alarcón R, García P, Lobo MC. 2009. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and β-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. Chemosphere. 75:(10)1376–1381. https://doi.org/10.1016/j.chemosphere.2009.03.014.
  • McGrath SP, Zhao FJ, Lombi E. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil. 232:207–214. https://doi.org/10.1023/A:1010358708525.
  • Moreno JL, García C, Hernández T. 2003. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. Eur J Soil Sci. 54:377–386. https://doi.org/10.1046/j.1365-2389.2003.00533.x.
  • Muyzer G, Waal ECD, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 59:695–700.
  • Nie J, Liu Y, Zeng G, Zheng B, Tan X, Liu H, Xie J, Gan C, Liu W. 2016. Cadmium accumulation and tolerance of Macleaya cordata: A newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environ Sci Pollut Res. 23:10189–10199. https://doi.org/10.1007/s11356-016-6263-7.
  • Oliveira A, Pampulha ME. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng. 102:157–161. https://doi.org/10.1263/jbb.102.157.
  • Pan J, Yu L. 2011. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Eng. 37:1889–1894. https://doi.org/10.1016/j.ecoleng.2011.07.002.
  • Pansu M, Gautheyrou J. 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Berlin, Heidelberg: Springer-Verlag.
  • Papa S, Bartoli G, Pellegrino A, Fioretto A. 2010. Microbial activities and trace element contents in an urban soil. Environ Monit Assess. 165:193–203. https://doi.org/10.1007/s10661-009-0938-1.
  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J. 2009. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol. 41:1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005.
  • Péter N, Károly B, László G, Éva S, Áron K.2003. Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. J Plant Physiol. 160:1175–1183. https://doi.org/10.1078/0176-1617–00770.
  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 11:789–799. https://doi.org/10.1038/nrmicro3109.
  • Quartaccia M F, Argillaa A, Bakerb A J M, Navari-Izzo F. 2006. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere. 63:918–925. https://doi.org/10.1016/j.chemosphere.2005.09.051.
  • Rogers JE, Li SW. 1985. Effect of metals and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bull Environ Contam Toxicol. 34:858–865. https://doi.org/10.1007/BF01609817.
  • Selvam A, Wong JW. 2009. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. J Hazard Mater. 167:170–178. https://doi.org/10.1016/j.jhazmat.2008.12.103.
  • Shi J, Yuan X, Lin H, Yang Y, Li Z. 2011. Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci. 12:3770–3785. https://doi.org/10.3390/ijms12063770.
  • Singh NK, Rai UN, Tewari A, Singh M. 2010. Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil. Bull Environ Contam Toxicol. 84:118–124. https://doi.org/10.1007/s00128-009-9875-5.
  • Sterckeman T, Redjala T, Morel JL. 2011. Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environ Exp Bot. 74:131–139. https://doi.org/10.1016/j.envexpbot.2011.05.010.
  • Sun X, Gao C, Guo LD. 2013. Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest. Chin Sci Bull. 58:4101–4108. https://doi.org/10.1007/s11434-013-5955-3.
  • Sun Y, Xu Y, Xu Y, Wang L, Liang X, Li Y.2016. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environ Pollut. 208:739–746. https://doi.org/10.1016/j.envpol.2015.10.054.
  • Sun Y, Zhou Q, Diao C. 2008. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol. 99:1103–1110. https://doi.org/10.1016/j.biortech.2007.02.035.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 68:323–329. https://doi.org/10.1016/j.chemosphere.2006.12.064.
  • Tyler G. 2004. Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma. 119:277–290. https://doi.org/10.1016/j.geoderma.2003.08.005.
  • Valentim DSJ, Varón-López M, Fonsêca CR, Lopes LP, Siqueira JO, Moreira FM. 2016. Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res. 23:6735–6748. https://doi.org/10.1007/s11356-015-5904-6.
  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf. 67:75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007.
  • Wang X, Liu Y, Zeng G, Chai L, Song X, Min Z, Xiao X. 2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Botany. 62:389–395. https://doi.org/10.1016/j.envexpbot.2007.10.014.
  • Wang Y, Wu D, Wang N, Hu S. 2011. Effect of Chlorophytum comosum growth on soil enzymatic activities of lead-contaminated soil. Procedia Environ Sci. 10:709–714. https://doi.org/10.1016/j.proenv.2011.09.114.
  • Whiting SN, De Souza MP, Terry N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol. 35:3144–3150. https://doi.org/10.1021/es001938v.
  • Wiatrowska K, Komisarek J, Dłużewski P. 2015. Effects of heavy metals on the activity of dehydrogenases, phosphatases and urease in naturally and artificially contaminated soils. J Elementol. 20:743–756. https://doi.org/10.5601/jelem.2014.19.2.675.
  • Wu F, Yang W, Zhang J, Zhou L. 2010. Cadmium accumulation and growth responses of a poplar (Populusdeltoids×Populusnigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater. 177:268–273. https://doi.org/10.1016/j.jhazmat.2009.12.028.
  • Wu FZ, Yang WQ, Zhang J, Zhou LQ. 2011.Growth responses and metal accumulation in an ornamental plant (Osmanthusfragran s var. thunbergii) submitted to different Cd levels. ISRN Ecol. 2011:738138. https://doi.org/10.5402/2011/738138.
  • Wu Q, Wang XF, Li Y, Zhao HB, Peng S. 2014. Response of rhizosphere bacterial diversity to phytoremediation of Ni contaminated sediments. Ecol Eng. 73:311–318. https://doi.org/10.1016/j.ecoleng.2014.09.088.
  • Xian Y, Wang M, Chen W. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere. 139:604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060.
  • Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P. 2017. Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf. 142:200–206. https://doi.org/10.1016/j.ecoenv.2017.03.047.
  • Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X. 2013. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut Res. 20:380–389. https://doi.org/10.1007/s11356-012-0902-4.
  • Xu ZY, Tang M, Chen H, Ban YH, Zhang HH. 2012. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Sci Total Environ. 435–436:453–464. https://doi.org/10.1016/j.scitotenv.2012.07.029.
  • Xue S, Wang J, Zhou X, Liu H, Chen Y. 2010. A critical reappraisal of Phytolaccaacinosa Roxb. (Phytolaccaceae) – a manganese-hyperaccumulating plant. Acta Ecol Sin. 30:335–338. https://doi.org/10.1016/j.chnaes.2010.10.001.
  • Yan W, Rebekka A, Johnson D. 2008. Species-specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganisms. Soil Biol Biochem. 40:544–549. https://doi.org/10.1016/j.soilbio.2007.09.001.
  • Yang RY, Tang JJ, Chen X, Hu SJ. 2007. Effects of coexisting plants species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol. 37:240–246. https://doi.org/10.1016/j.apsoil.2007.07.004.
  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259:181–189. https://doi.org/10.1023/B:PLSO.0000020956.24027.f2.
  • Zhu J, Zhang J, Li Q, Han T, Xie J, Hu Y, Chai L. 2013. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar Pollut Bull. 70:134–139. https://doi.org/10.1016/j.marpolbul.2013.02.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.