251
Views
32
CrossRef citations to date
0
Altmetric
Articles

Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus

, , , , , & show all

References

  • Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A. 2007. Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int J Phytorem. 9:41–52. doi:10.1080/15226510601139417.
  • Abou-Shanab R, Angle J, Chaney R. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem. 38:2882–2889. doi:10.1016/j.soilbio.2006.04.045.
  • Aebi H. 1984. In: Catalase in Vitro. Methods in Enzymology. SP Colowick, NO Kaplan. editors. Florida: Acad. Press; 105:114–121.
  • Agency for toxic substances and disease registry (ATSDR). 2011. The priority list of hazardous substances. http://www.ATSDR.cdc.gov/SPL/index.html.
  • Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Uni Sci. 26(1):1–20. doi:10.1016/j.jksus.2013.05.001.
  • Ahmad P, Abdullah EF, Hashem A, Sarwat M, Gucel S. 2016. Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul. 35(4):936–950. doi:10.1007/s00344-016-9592-3.
  • Ahmad P, Sharma S, Srivastava PS. 2006. Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. J Plant Physiol Molec Biol. 12:59–66.
  • Anh BTK, Ha NTH, Danh LT, Minh VV, Kim DD. 2017. Phytoremediation applications for metal-contaminated soils using terrestrial plants in Vietnam. Phytoremediation. 157–181. doi:10.1007/978-3-319-52381-1_6.
  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I. 2015. Cadmium toxicity in maize (Zea mays L.): Consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res. 22:17022–17030. doi:10.1007/s11356-015-4882-z.
  • Artiushenko T, Syshchykov D, Gryshko V, Ciamporova M, Fiala R, Repka V. 2014. Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia. 69:1142–1147. doi:10.2478/s11756-014-0414-4.
  • Bates L, Waldren PP, Teare JD. 1973. Rapid determination of free proline of water stress studies. Plant Soil. 39:205207.doi: 10.1007/BF00018060.
  • Belimov AA, Hontzeas AA, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L Czern.). Soil Biol Biochem. 37:241–250. doi:10.1016/j.soilbio.2004.07.033.
  • Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem. 72:248–254.
  • Braud A, Jezequel K, Bazot S, Lebeau T. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere. 74:280–286. doi:10.1016/j.chemosphere.2008.09.013.
  • Bric JM, Bostock RM, Silversone SE. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl Environ Microbiol. 57:535–538.
  • Burd GI, Dixon DG, Glick, BR. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol. 46:237–245. doi:10.1139/w99-143.
  • Burt R. 2014. Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2.0. Soil Survey Staff (ed.). U.S. Department of Agriculture, Natural Resources Conservation Service.
  • Cay S. 2016. Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environ Monit Assess. 188:320.doi:10.1007/s10661-016-5334-z.
  • Chauhan JS, Rai JPN. 2009. Phytoextraction of soil cadmium and zinc by microbes inoculated Indian mustard (Brassica juncea). J Plant Interact. 4(4):279–287.doi:10.1080/17429140903243427. doi:10.1080/17429140903243427.
  • Chen S, Chao L, Sun L, Sun T. 2013. Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris Var. cicla L. Int J Phytorem. 15(5):477–487. doi:10.1080/15226514.2012.716100.
  • Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater. 151:364–371. doi:10.1016/j.jhazmat.2007.05.082.
  • Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci. 33:374–391. doi:10.1080/07352689.2014.903747.
  • De-Souza MP, Huang CPA, Chee N, Terry N. 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta. 209:259–263. doi:10.1007/s004250050630.
  • Erdogan U, Çakmakçi R, Varmazyari A, Turan M, Erdogan Y, Kitir N. 2016. Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agric. 103(1):67–76. doi:10.13080/z-a.2016.103.009.
  • Fang Q, Fan Z, Xie Y, Wang X, Li K, Liu Y. 2016. Screening and evaluation of the bioremediation potential of Cu/Zn-resistant, autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Front Plant Sci. 7:1487. doi:10.3389/fpls.2016.01487.
  • Fatma M, Masood A, Per TS, Khan NA. 2016. Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci. 7:521. doi:10.3389/fpls.2016.00521.
  • Gaonkar T, Bhosle S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere. 93:1835–1843. doi:10.1016/j.chemosphere.2013.06.036.
  • Giannopolitis CN, Reis SK. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59:309–314. doi:10.1104/pp.59.2.309.
  • Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169:30–39. doi:10.1016/j.micres.2013.09.009.
  • Golshan M, Habibi D, Beladi SM, Maleki MJ. 2011. Copper and lead tolerance strategies in mustard (Sinapis arvensis) Egyption clover (Trifolium alexandrinum) and hairy vetch (Vicia villosa): Role of some antioxidant enzymes. Am Eur J Agric Environ Sci. 11:122–128.
  • Gururani MA, Upadhyaya CP, Baskar V. et al. 2012. Plant growth promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul. 32:245–258.
  • Habib SH, Kausar H, Saud HM. 2016. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. BioMedic Res Int. 2016:6284547. doi:10.1155/2016/6284547.
  • Hadi F, Bano A. 2010. Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot. 42:4363–4370.
  • Hasnain S, Thomas CM. 1996. Two related rolling circle replicating plasmids from salt-tolerant bacteria. Plasmid. 36:191–199. doi:10.1006/plas.1996.0046.
  • Hassan TU, Bano A, Naz I. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytorem. 19(6):522–529. doi:10.1080/15226514.2016.1267696.
  • He HD, Ye ZH, Yang DJ, Yan JL, Xiao L, Zhong T, Yuan M, Cai XD, Fang ZQ, Jing YX. 2013. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere. 90:1960–1965. doi:10.1016/j.chemosphere.2012.10.057.
  • Hiscox JD, Israelstam GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 57:1332–1334. doi:10.1139/b79-163.
  • Honma M, Shimomura T. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 42:1825–1831. doi:10.1271/bbb1961.42.1825.
  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H. 2014. Influence of Pseudomonas aeruginosaas PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxic Environ Saf. 104:285–293. doi:10.1016/j.ecoenv.2014.03.008.
  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, Rehman SU, Rha ES. 2014. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytorem. 16(6):554–571. doi:10.1080/15226514.2013.798621.
  • Kamran MA, Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Chaudhary HJ. 2014. The potential of the flora from different regions of Pakistan in phytoremediation: A review. Environ Sci Pollut Res. 21:801–812. doi:10.1007/s11356-013-2187-7.
  • Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 180:368–374. doi:10.1016/j.plantsci.2010.10.011.
  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E. 2008. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J. 412(2):275–285. doi:10.1042/BJ20080030.
  • Kapoor D, Kaur S, Bhardwaj R. 2014. Physiological and biochemical changes in Brassica juncea Plants under Cd-induced stress. Biomed Res Int 2014:726070.doi:10.1155/2014/726070.
  • Kartik VP, Jinal HN, Amaresan N. 2016. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. Int J Phytorem. 18(11):1061–1066. doi:10.1080/15226514.2016.1183576.
  • Khan N, Bano A. 2016. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytorem. 18(12):1258–1269. doi:10.1080/15226514.2016.1203287.
  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. 2017a. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytorem. 19(9):813–824.doi:10.1080/15226514.2017.1290580.
  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A. 2017b. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb contaminated soils. Int J Phytorem. 19(6):514–521. doi:10.1080/15226514.2016.1254154.
  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A. 2017c. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni contaminated soils. Int J Phytorem. 19(5):470–477.doi:10.1080/15226514.2016.1244167.
  • Kumar PBAN, Dushenkov V, Motto H, Raskin L. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol. 29:1232–1238. doi:10.1021/es00005a014.
  • Li W, Shan F, Sun S, Corke H, Beta T. 2005. Free radical scavenging properties and phenolic content of Chinese blackgrained wheat. J Agric Food Chem. 53:8533-8536. doi:10.1021/jf051634y.
  • Li WC, Ye ZH, Wong MH. 2007. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot. 58(15/16):4173–4182. doi:10.1093/jxb/erm274.
  • Li X, Liu L, Wang Y, Luo G, Chen X, Yang X, Hall MHP, Guo R, Wang H, Cui J, He X. 2013. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma. 192:50–58. doi:10.1016/j.geoderma.2012.08.011.
  • Lysenko EA, Klaus AA, Pshybytko NL, Kusnetsov VV. 2015. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Phytosynth Res. 125:291–303. doi:10.1007/s11120-014-0047-z.
  • Ma Y, Prasad M, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29:248–258. doi:10.1016/j.biotechadv.2010.12.001.
  • Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. 2015. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci. 5:757. doi:10.3389/fpls.2014.00757.
  • Ma Y, Rajkumar M, Freitas H. 2009. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere. 75:719–725. doi:10.1016/j.chemosphere.2009.01.056.
  • Mahmood S, Daur I, Samir G, Al-Solaimani, Ahmad S, Mohamed H, Madkour, Yasir M, Hirt H, Ali S, Ali Z. 2016. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of Mung bean. Front Plant Sci. 7:876. doi:10.3389/fpls.2016.00876.
  • Mattina MJI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124:375–378. doi:10.1016/S0269-7491(03)00060-5.
  • McGrath SP, Cunliffe CH. 1985. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J Sci Food Agric. 36:794–798. doi:10.1002/jsfa.2740360906.
  • Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud. 15:523–530.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.
  • Noctor G, Mhamdi A, Foyer CH. 2016. Oxidative stress and antioxidative systems: Recipes for successful data collection and interpretation. Plant Cell Environ. 39(5):1140–1160. doi:10.1111/pce.12726.
  • Nosheen A, Bano A, Yasmin H, Keyani R, Habib R, Shah TA, Naz R. 2016. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.). Front Plant Sci. 7:104. doi:10.3389/fpls.2016.00104.
  • Padmaja K, Prasad DDK, Prasad ARK. 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica. 24:399–405.
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA. 2002. Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem. 40:521–530. doi:10.1016/S0981-9428(02)01404-3.
  • Patel PR, Shaikh SS, Sayyed RZ. 2016 Apr. Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol. 54(4):286–290.
  • Patsikka E, Marja K, Tyystjarvi E. 2002. Excess copper predisposes photosystem II to photo inhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Am Soc Plant Physiol. 21:834–847.
  • Porch S, Hunter A. 2002. Special publication No. 5. Hongkong: PPIC China program. p. 62.
  • Rajkumar M, Freitas H. 2008. Effects of inoculation of plant- growth promoting bacteria on Ni uptake by Indian mustard. Biores Technol. 99:3491–3498. doi:10.1016/j.biortech.2007.07.046.
  • Rao KVM, Sresty TVS. 2000. Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157:113–128. doi:10.1016/S0168-9452(00)00273-9.
  • Raveh A, Avnimelech Y. 1979. Total nitrogen analysis in water, soil and plant material with a peru sulphate oxidation. Water Res. 13:911–912. doi:10.1016/0043-1354(79)90227-6.
  • Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S. 2017. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int J Phytorem. 19(4):360–370. doi:10.1080/15226514.2016.1225289.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Ann Biochem. 160:47–56. doi:10.1016/0003-2697(87)90612-9.
  • Sharma SS, Dietz KJ. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14:43–50. doi:10.1016/j.tplants.2008.10.007.
  • Shereefa LAH, Kumaraswamy M. 2016. Reactive oxygen species and ascorbate–glutathione interplay in signaling and stress responses in Sesamum orientale L. against Alternaria sesami (Kawamura) Mohanty and Behera. J Saudi Society Agric Sci. 15(1):48–56.
  • Shin MN, Shim J, You Y, Ng H, Bang KS, Cho M, Kamala-Kannan S, Oh BT. 2012. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hy-peraccumulator Alnus firma. J Hazard Mater. 199(200):314–320. doi:10.1016/j.jhazmat.2011.11.010.
  • Singh A, Gupta R, Pandey R. 2016. Rice seed priming with picomolarrutin enhances rhizospheric Bacillus subtilis cim colonization and plant growth. Plos one. 11(1): e0146013. doi:10.1371/journal.pone.0146013.
  • Sundara-Rao WVB, Sinha MK. 1963. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J Agr Sci. 33:272–278.
  • Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N. 2016. Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol. 7:1016. doi:10.3389/fmicb.2016.01016.
  • Tak HI, Ahmad F, Babalola OO. 2013. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol. 223:33–52. doi:10.1007/978-1-4614-5577-6-2.
  • Taran N, Batsmanova L, Kovalenko M, Okanenko A. 2016. Impact of metal nanoform colloidal solution on the adaptive potential of plants. Nanoscale Res Lett. 11:89. doi:10.1186/s11671-016-1294-z.
  • Van-Loon LC, Geraats BPJ, Linthorst HJM. 2006. Ethylene as a modulator of disease resistance in 916 plants. Trends Plant Sci. 11:184–191. doi:10.1016/j.tplants.2006.02.005.
  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability, a review. Molecules. 21(5):573–590. doi:10.3390/molecules21050573.
  • Velikova V, Yordanov I, Dreva E. 2000. Oxidative stress and some antioxidant system in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151:59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Wang M, Chen W, Peng C. 2016. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere. 144:346–351. doi:10.1016/j.chemosphere.2015.09.001.
  • Xu W, Peng H, Yang T, Whitaker B, Huang L, Sun J. 2014. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiol Biochem. 82:289–298. doi:10.1016/j.plaphy.2014.06.015.
  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN. 1985. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol. 121:453–461. doi:10.1016/S0176-1617(85)80081-X.
  • Verma S, Dubey RS. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164:645–655. doi:10.1016/S0168-9452(03)00022-0.
  • Yang Y, Ge Y, Zeng H, Zhou X, Peng L, Zeng Q. 2017. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci Rep. 7:7210. doi:10.1038/s41598-017-05834-8
  • Yang Y, Xuleing W, Jim L, Ruxia S. 2010. Lead induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivium L.). Ecotoxicol Environ Saf. 73:1982–1987. doi:10.1016/j.ecoenv.2010.08.041.
  • Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P. 2017. Phytoremediation potential of plants growing on the Pb-contaminated soil at Song Tho Pb mine, Thailand. Soil Sediment Contam Int J. 26(4):426–437. doi:10.1080/15320383.2017.1348336.
  • Weil RR, Islam KR, Stine MA, Gruver JB, Sampson-Liebig SE. 2003. Estimating active carbon for soil quality assessment; a simplified method for laboratory and field use. Am J Alternative Agric. 18:3–17. doi:10.1079/AJAA2003003.
  • Wilkins D. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80:623–633. doi:10.1111/j.1469-8137.1978.tb01595.x.
  • Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemi. 64:555–559. doi:10.1016/S0308-8146(98)00102-2.
  • Zieslin N, Ben-Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem. 31:333–339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.