75
Views
2
CrossRef citations to date
0
Altmetric
Articles

P uptake characteristics and root morphological responses in the mining ecotype of Polygonum hydropiper under high organic P media

, , , &

References

  • Ben Rejeb K, Ghnaya T, Zaier H, Benzarti M, Baioui R, Ghabriche R, Walia M, Lutts S, Abdelly C. 2013. Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecol Eng. 60:309–315. doi:10.1016/j.ecoleng.2013.07.026.
  • Condron LM, Turner BL, Cade-Menum BJ. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN, editors. Phosphorus: agriculture and the environment. Madison, WI: ASA-CSSA-SSSA. p. 87–121.
  • Ding Y, Feng R, Wang R, Guo J, Zheng X. 2014. A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375(1–2):289–301. doi:10.1007/s11104-013-1966-8.
  • Feng RW, Wei CY, Tu SX, Ding YZ, Song ZG. 2013. A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biol Trace Elem Res. 151(1):113–121. doi:10.1007/s12011-012-9532-4.
  • Fernandes AM, Soratto RP, Gonsales JR. 2014. Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply. Sci Hortic. 180:190–198. doi:10.1016/j.scienta.2014.10.035.
  • George TS, Richardson AE, Hadobas PA, Simpson RJ. 2004. Characterization of transgenic Trifolium subterraneum L. which expresses phya and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ. 27(11):1351–1361. doi:10.1111/j.1365-3040.2004.01225.x.
  • Gotcher MJ, Zhang H, Schroder JL, Payton ME. 2014. Phytoremediation of soil phosphorus with crabgrass. Agron J. 106(2):528–536. doi:10.2134/agronj2013.0287.
  • Huang X, Li TX, Zhang XZ, Zheng ZC, Yu HY. 2012. Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply. J Plant Nutr Soil Sc. 175(2):290–302. doi:10.1002/jpln.201100067.
  • Jiang SH. 1999. Analysis of plant moisture content, dry matter, crude ash and total nitrogen, phosphorus, potassium concentration. In: Lu RK, editors. Analysis of Soil Agrochemistry. Chinese Agricultural Science and Technology Press. p. 312–314 (in Chinese).
  • Kong YB, Li XH, Ma J, Li WL, Yan GJ, Zhang CY. 2014. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Plant Cell Rep. 33(4):655–667. doi:10.1007/s00299-014-1588-5.
  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot. 98(4):693–713. doi:10.1093/aob/mcl114.
  • Li M, Sheng GP, Wu YJ, Yu ZL, Bañuelos GS, Yu HQ. 2014a. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation. Environ Sci Pollut R. 21(16):9617–9625. doi:10.1007/s11356-014-2987-4.
  • Li H, Ma Q, Li H, Zhang F, Rengel Z, Shen J. 2014b. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376(1-2):151–163. doi:10.1007/s11104-013-1965-9.https://doi.org/10.1007/s11104-013-1965-9.
  • Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ. 2009. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res. 43(5):1247–1256. doi:10.1016/j.watres.2008.12.013.
  • Lu H, Li Z, Fu S, Méndez A, Gascó G, Paz-Ferreiro J. 2015. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere 119:209–216. doi: 10.1016/j.chemosphere.2014.06.024.
  • Lynch JP. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol. 56(3):1041–1049. doi:10.1104/pp.111.175414.
  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y. 2009. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29(4):579–585. doi:10.1093/treephys/tpn050.
  • Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A, Plassard C, Drevon JJ. 2014. Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. Planta 239(4):901–908. doi:10.1007/s00425-013-2023-9.
  • Mcdowell RW, Nash D. 2012. A review of the cost-effectiveness and suitability of mitigation strategies to prevent phosphorus loss from dairy farms in New Zealand and Australia. J Environ Qual 41(3):680–693. doi:10.1007/s12665-014-3508-y.
  • Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkinsa M, Heaven MW. 2014. Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma 221-222:11–19. doi:10.1016/j.geoderma.2013.12.004.
  • Ni Z, Wang S, Wang Y. 2016. Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environ Pollut. 219:537–544. doi:10.1016/j.envpol.2016.05.087.
  • Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KH, Bolland MD, Lambers H. 2010. Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331(1-2):241–255. doi:10.1007/s11104-009-0249-x.
  • Priya P, Sahi SV. 2009. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium). Plant Physiol Bioch. 47(1):31–36. doi:10.1016/j.plaphy.2008.09.002.
  • Richardson AE, Hadobas PA, Hayes JE. 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25(6):641–649. doi:10.1046/j.1365-313x.2001.00998.x.
  • Shah SRU, Agback P, Lundquist PO. 2015. Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency. Plant Soil 397(1-2):75–91. doi:10.1007/s11104-015-2598-y.
  • Sharma NC, Sahi SV. 2011. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions. Environ Sci Technol. 45(24):10531–10537. doi:10.1021/es200942v.
  • Shu L, Shen J, Rengel Z, Tang C, Zhang F, Cawthray G. 2007. Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources. Plant Sci. 172(5):1017–1024. doi:10.1016/j.plantsci.2007.02.006.
  • Silveira ML, Vendramini JMB, Sui XL, Sollenberger L, O'Connor GA. 2013. Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenerg. Res. 6(2):469–475. doi:10.1007/s12155-012-9267-2.
  • Starnes DL, Padmanabhan P, Sahi SV. 2008. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum L.). Plant Physiol Bioch. 46(5-6):580–589. doi:10.1016/j.plaphy.2007.06.002.
  • Turner BL, Paphazy MJ, Haygarth PM, Mc-Kelvie ID. 2002. Inositol phosphates in the environment. Philos Trans R Soc London B 357(1420):449–469. doi:10.1098/rstb.2001.0837.
  • Wang L, Liang T. 2015. Distribution characteristics of phosphorus in the sediments and overlying water of Poyang Lake. Plos One 10(5):e0125859. doi: 10.1371/journal.pone.0125859.
  • Wang W, Liang T, Wang L, Liu Y, Wang Y, Zhang C. 2013. The effects of fertilizer applications on runoff loss of phosphorus. Environ Earth Sci. 68(5):1313–1319. doi:10.1007/s12665-012-1829-2.
  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J. 2013. Root traits for infertile soils. Front Plant Sci. Article 4:1–7. doi.org/10.3389/fpls.2013.00193.
  • Xiao GL, Li TX, Zhang XZ, Yu HY, Huang HG, Gupta DK. 2009. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area. J. Hazard Mater. 171(1–3):542–550. doi:10.1016/j.jhazmat.2009.06.034.
  • Ye DH, Li TX, Chen GD, Zheng ZC, Yu HY, Zhang XZ. 2014a. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper. Chemosphere 105(3):139–145. doi:10.1016/j.chemosphere.2014.01.007.
  • Ye DH, Li TX, Huang X, Zhang XZ, Zheng ZC, Yu HY. 2015a. P accumulation potential of Polygonum hydropiper grown in high P media. Clean-Soil Air Water 43(2):279–286. doi:10.1002/clen.201300737.
  • Ye DH, Li TX, Zhang XZ, Zheng ZC, Dai WY. 2017. Rhizosphere P composition, phosphatase and phytase activities of Polygonum hydropiper grown in excess P soils. Biol. Fert. Soils 53(8):823–836. doi:10.1007/s00374-017-1218-9.
  • Ye DH, Li TX, Zhang XZ, Zheng ZC, Liu S, Li JX. 2014b. P uptake characteristics and p removal potentials of Pilea sinofasciata, grown under soils amended with swine manure. Ecol Eng. 73:553–559. doi:10.1016/j.ecoleng.2014.09.045.
  • Ye DH, Li TX, Zheng ZC, Zhang XZ, Chen GD, Yu HY. 2015b. Root physiological adaptations involved in enhancing P assimilation in mining and non-mining ecotypes of Polygonum hydropiper grown under organic P media. Front Plant Sci. Article 36:1–10.
  • Zhang Y, Zhou Z, Yang Q. 2013. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil 364(1-2):93–104. doi:10.1007/s11104-012-1352-y.
  • Zhao Y, Yang Z, Xia X, Wang F. 2012. A shallow lake remediation regime with Phragmites ausralis: incorporating nutrient removel and water evapotranspiration. Water Res. 46(17):5635–5644. doi:10.1016/j.watres.2012.07.053.
  • Zheng ZC, Li TX, Zeng FF, Zhang XZ, Yu HY, Wang YD, Liu T. 2013. Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper. Agr Water Manage. 117:19–25. doi:10.1016/j.agwat.2012.10.017.
  • Zimmermann P, Zardi G, Lehmann M, Zeder C, Amrhein N, Frossard E, Bucher M. 2003. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts. Plant Biotechnol J. 1(5):353–360. doi:10.1046/j.1467-7652.2003.00033.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.