151
Views
7
CrossRef citations to date
0
Altmetric
Articles

Surface treated Pteris vittata L. pinnae powder used as an efficient biosorbent of Pb(II), Cd(II), and Cr(VI) from aqueous solution

, &

References

  • Abdolali A, Ngo HH, Guo W, Zhou JL, Du B, Wei Q, Wang XC, Nguyen PD. 2015. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresource Technol. 193:477–487. doi:10.1016/j.biortech.2015.06.123.
  • Anwar J, Shafique U, Zaman W, Salman M, Dar A, Anwar S. 2010. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technol. 101(6):1752–1755. doi:10.1016/j.biortech.2009.10.021.
  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Li D, Mahmood T. 2016. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-monmorillonite in aqueous solutions. Int J Phytoremediation. 19(7):605–613. doi:10.1080/15226514.2016.1256372.
  • Blázquez G, Martín-Lara MA, Tenorio G, Calero M. 2011. Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Engg J. 168(1):170–177. doi:10.1016/j.cej.2010.12.059.
  • Bohli T, Villaescusa I, Ouederni A. 2013. Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon. J Chem Eng Process Technol. 4(4):1–7. doi:10.4172/2157-7048.1000158.
  • Calero M, Pérez A, Blázquez G, Ronda A. 2013. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol Eng. 58:344–354. doi:10.1016/j.ecoleng.2013.07.012.
  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H. 2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels. 6(1):1–10. doi:10.1186/1754-6834-6-8. PMID:23298573.
  • Chubar N, Carvalho JR, Correia MJN. 2004. Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloid Surface A. 238(1–3):51–58. doi:10.1016/j.colsurfa.2004.01.039.
  • Donhoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Moier NS, et al. 2011. Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresource Technol. 102(24):11097–11104. doi:10.1016/j.biortech.2011.03.092.
  • Drăghiceanu OA, Dobrescu CM, Soare LC. 2014. Applications of pteridophytes in phytoremediation. Curr Trends Natural Sci. 3(6):68–73.
  • Drake LR, Lin S, Rayson GD, Jackson PJ. 1996. Chemical modification and metal binding studies of Datura innoxia. Environ Sci Technol. 30(1):110–114. doi:10.1021/es950131d.
  • Fomina M, Gadd GM. 2014. Biosorption: current perspectives on concept, definition and application. Bioresource Technol. 160:3–14. doi:10.1016/j.biortech.2013.12.102.
  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ. 284(1–3):27–35. doi:10.1016/s0048-9697(01)00854-3. PMID:11846172.
  • Ghosh MR, Mishra SP. 2017. Effect of co-ions on Cr(VI) and F− adsorption by Thermally Treated Bauxite (TTB). Arab J Sci Eng. 42(10):4391–4400. doi:10.1007/s13369-017-2472-8.
  • Gong R, Ding Y, Liu H, Chen Q, Liu Z. 2005. Lead biosorption and desorption by intact and pretreated spirulina maxima biomass. Chemosphere. 58(1):125–130. doi:10.1016/j.chemosphere.2004.08.055. PMID:15522341.
  • Hodson ME. 1998. Measurements of internal and external surface area in feldspars—implications for mineral dissolution studies. Mineral Mag. 62A:634–635. doi:10.1180/minmag.1998.62A.1.334.
  • Jӧnsson LJ, Martín C. 2016. Pretreatment of lignocelluloses: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technol. 199:103–112. doi:10.1016/j.biortech.2015.10.009.
  • Kachenko AG, Singh B, Bhatia NP. 2007. Heavy metal tolerance in common fern species. Aust J Bot. 55(1):63–73. doi:10.1071/bt06063.
  • Karnib M, Kabbani A, Holail H, Olama Z. 2014. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia. 50:113–120. doi:10.1016/j.egypro.2014.06.014.
  • Karp EM, Resch MG, Donohoe BS, Ciesielski PN, O'Brien MH, Nill JE, Mittal A, Biddy MJ, Beckham GT. 2015. Alkaline pretreatment of switchgrass. ACS Sustain Chem Eng. 3(7):1479–1491. doi:10.1021/acssuschemeng.5b00201.
  • Khosa MA, Ullah A. 2014. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater. 278:360–371. doi:10.1016/j.jhazmat.2014.06.023.
  • Landrigan PL, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford J, et al. 2017. The Lancet commission on pollution and health. Lancet. 1–51. doi:10.1016/S0140-6736(17)32345-0.
  • Lezcano JM, Gozález F, Ballester A, Blázquez ML, Muñoz JA. 2016. Mechanisms involved in sorption of metals by chemically treated waste biomass from irrigation pond. Environ Earth Sci. 75(10):852–864. doi:10.1007/s12665-016-5657-7.
  • Li G, Yan C, Zhang D, Zhao C, Chen G. 2013. Cadmium(II) biosorption from aqueous solutions using Hydrilla verticillata. Can J Chem Engg. 13:1022–1030. doi:10.1002/cjce.21734.
  • Luz BRD. 2006. Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol. 172(2):305–318. doi:10.1111/j.1469-8137.2006.01823.x. PMID:16995918.
  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature. 409:579. doi:10.1038/35054664. PMID:11214308.
  • Martín- Lara MA, Blázquez G, Ronda A, Pérez A, Calero M. 2013. Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone. Ind Eng Chem Res. 52(31):10809–10819. doi:10.1021/ie401246c.
  • McDonald J. 2014. Handbook of biological statistics. 3rd ed. Baltimore (Maryland): Sparky House Publishing. p. 145.
  • Mopoung R, Kengkhetkit N. 2016. Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. Int J Appl Chem. 12(1):23–35.
  • Mopoung R, Kengkhetkit N. 2016. Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. Int J Appl Chem. 12(1):23–35.
  • Morsay FM, Hassan SHA, Koutb M. 2011. Biosorption of Cd(II) and Zn(II) by Nostoc commune: isotherm and kinetic studies. Clean—Sol, Air, Water. 39(7):680–687. doi:10.1002/clen.201000312.
  • Natarajan S, Stamps RH, Ma LQ, Saha UK, Hernandez D, Cai Y, Zillioux E. 2010. Phytoremediation of arsenic- contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. J Hazard Mater. 185(2–5):983–989. doi:10.1016/j.jhazmat.2010.10.002. PMID:21051137.
  • Ngah WSW, Hanafiah MAKM. 2007. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technol. 99(10):3935–3948. doi:10.1016/j.biortech.2007.06.011.
  • Nin-Chuan F, Xue-Yi G. 2012. Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. T Nonferr Metal Soc. 22(5):1224–1231. doi:10.1016/s1003-6326(11)61309-5.
  • Okoli CP, Diagboya PN, Anibogu IO, Olu-Owolabi BI, Adebowale KO. 2017. Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environ Earth Sci. 76(1):33. doi:10.1007/s12665-016-6368-9.
  • Park D, Yun YS, Park JM. 2010. The past, present, and future trends of biosorption. Biotechnol Bioproc E. 15(1):86–102. doi:10.1007/s12257-009-0199-4.
  • Pirbazari AE, Saberikhah E, Badrouh M, Emami MS. 2014. Alkali treated foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour Ind. 6:64–80. doi:10.1016/j.wri.2014.07.003.
  • Pokethitiyook P, Poolpak T. 2016. Biosorption of heavy metals from aqueous solutions. In: Ansari AA, Gill SS, Gill R, Langa GR, Newman L, editors. Phytoremediation: management of environmental contaminants. Switzerland: Springer International. p. 123.
  • Prabhu SG, Srinikethan G, Hegde S. 2016. Potential of pteridophytes in heavy metal phytoremediation. IJRET. 5(17):1–9.
  • Qaiser S, Saleemi AR, Umar M. 2009. Biosorption of lead(II) and chromium(VI) on groundnut hull: equilibrium, kinetics and thermodynamics study. Electron J Biotechnol. 12(4):1–9. doi:10.2225/vol12-issue4-fulltext-6.
  • Rahman IA, Ismail J, Osman H. 1997. Effect of nitric acid digestion on organic materials and silica in rice husk. J Mater Chem. 7(8):1505–1509. doi:10.1039/a700823f.
  • Sağ Y, Aktay Y. 2000. Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem. 36(1–2):157–173. doi:10.1016/s0032-9592(00)00200-4.
  • Saha B, Orvig C. 2010. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordin Chem Rev. 254(23–24):2959–2972. doi:10.1016/j.ccr.2010.06.005.
  • Sharma A, Kaur M, Katnoria JK, Nagpal AK. 2015. Heavy metal pollution: a global pollutant of rising concern. In: Ashok K. Rathoure and Vinod K. Dhatwalia, editors. Toxicity and waste management using bioremediation. Pennsylvania (USA): IGI Global. p. 1–26.
  • Sharma A, Sachdeva S. 2015. Cadmium toxicity and its phytoremediation—A review. IJSER. 6(9):395–405.
  • Shrestha S. 2016. Chemical, structural and elemental characterization of biosorbents using, FE- SEM, SEM- EDX, XRD/ XRPD and ATR- FTIR techniques. J Chem Eng Process Technol. 7(3):1–11. doi:10.4172/2157-7048.1000295.
  • Shroff KA, Vaidya VK. 2011. Effect of pre-treatment on the biosorption of chromium (VI) ions by the dead biomass of Rhizopus arrhizus. J Chem Technol Biotechnol. 87(2):294–304. doi:10.1002/jctb.2715.
  • Singh R, Gautham N, Mishra A, Gupta R. 2011. Heavy metals and living systems: an overview. Indian J Pharmacol. 43(3):246–253. doi:10.4103/0253-7613.81505. PMID:21713085.
  • Singha B, Das SK. 2011. Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloid Surface B. 84(1):221–232. doi:10.1016/j.colsurfb.2011.01.004.
  • Tuama AH, Mohammed AA. 2014. Removal of heavy metal ions from aqueous solutions using tobacco leaves as sorbent. Euro J Appl Eng Sci Res. 3(2):19–32.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011:1–20. doi:10.5402/2011/402647.
  • Xuan Z, Tang Y, Li X, Liu Y, Luo F. 2006. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto preheated chemically modified orange peel. Biochem Eng J. 31(2):160–164. doi:10.1016/j.bej.2006.07.001.
  • Yehia A, El-Rahiem AFH, El-Taweel RS. 2008. Removal of heavy metals from aqueous solutions by unburned carbon separated from blast furnace flue dust. Min Process Extr Met (Trans. Inst. Min Metall. C). 117(4):205–208. doi:10.1179/174328507X249783.
  • Yeneneh AM, Maitra S, Eldemerdash U. 2011. Study on biosorption of heavy metals by modified lignocellulosic waste. J Appl Sci. 11(21):3555–3562. doi:10.3923/jas.2011.3555.3562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.